Những câu hỏi liên quan
HL
Xem chi tiết
H24
6 tháng 3 2017 lúc 20:22

2016,09987

Bình luận (0)
HL
6 tháng 3 2017 lúc 20:24

Bạn trả lời sai rồi !

Bình luận (0)
H24
Xem chi tiết
H24
6 tháng 7 2021 lúc 12:19

Áp dụng bất đẳng thức Cosi cho 2 số dương ta có:

\(\sqrt{1.2014} \leq \frac{1+2014}{2}=\frac{2015}{2} \\ \Rightarrow \frac{1}{\sqrt{1.2014}} \geq \frac{2}{2015}\)

Trong tổng A có 2014 phân thức, mỗi phân thức theo chứng minh tương tự, ta đều chỉ được nó lớn hơn hoặc bằng \( \frac{2}{2015}\)

Suy ra \(A\geq \frac{2.2014}{2015} = B\)

Dấu = xảy ra khi \(\Leftrightarrow\) \(1=2014\\ 2=2013\\ ...\\ 2014=1\) (vô lý)

Vậy A>B

Bình luận (0)
NL
6 tháng 7 2021 lúc 12:20

Sử dụng BĐT: \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\) (với \(a\ne b\)) ta được:

\(A>\dfrac{2}{1+2014}+\dfrac{2}{2+2013}+...+\dfrac{2}{2014+1}\) (2014 số hạng)

\(A>\dfrac{2}{2015}+\dfrac{2}{2015}+...+\dfrac{2}{2015}=\dfrac{2.2014}{2015}\)

\(A>\dfrac{4028}{2015}\)

Vậy \(A>B\)

Bình luận (0)
VH
Xem chi tiết
PW
Xem chi tiết
PQ
22 tháng 9 2018 lúc 19:34

Theo bđt Cauchy ta có \(\frac{a+b}{2}>\sqrt{ab}\) \(\left(a,b\ge0;a\ne b\right)\)

\(\Leftrightarrow\)\(\frac{2}{a+b}< \frac{1}{\sqrt{ab}}\)

Đặt \(A=\frac{1}{\sqrt{1.2014}}+\frac{1}{\sqrt{2.2013}}+...+\frac{1}{\sqrt{2014.1}}\)

\(A=\frac{2}{1+2014}+\frac{2}{2+2013}+...+\frac{2}{2014+1}\)

\(A=2\left(\frac{1}{1+2014}+\frac{1}{2+2013}+...+\frac{1}{2014+1}\right)\)

\(A=2\left(\frac{1}{2015}+\frac{1}{2015}+...+\frac{1}{2015}\right)\)

\(A=2.\frac{2014}{2015}\)

\(A=\frac{4028}{2015}\)

Vậy \(A=\frac{4028}{2015}\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
22 tháng 9 2018 lúc 20:54

sorry mk nhầm 

Sửa lại các dấu "=" thành dấu ">" nha bn 

Chúc bạn học tốt ~ 

Bình luận (0)
MF
22 tháng 9 2018 lúc 20:58

Phùng Minh Quân: dấu \(\ge\)mà.

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{2}{a+b}\le\frac{1}{\sqrt{ab}}\)

Bình luận (0)
VB
Xem chi tiết
DH
19 tháng 7 2018 lúc 8:38

Theo BĐT \(AM-GM\) ta có : \(\sqrt{ab}< \frac{a+b}{2}\) với \(a;b>0;a\ne b\)\(\Rightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)

Áp dụng ta được : 

\(S>\frac{2}{1+2014}+\frac{2}{2+2013}+...+\frac{2}{k+2014-k+1}+...+\frac{2}{2014+1}\)

\(=2\left(\frac{1}{2015}+\frac{1}{2015}+...+\frac{1}{2015}\right)=2.\frac{2014}{2015}\)

Vậy \(S>2.\frac{2014}{2015}\)

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
ST
15 tháng 7 2017 lúc 13:27

Ta có: \(M=\frac{2014^2+1^2}{2014.1}+\frac{2013^2+2^2}{2013.2}+\frac{2012^2+3^2}{2012.3}+...+\frac{1008^2+1007^2}{1008.1007}\)

\(=\frac{2014}{1}+\frac{1}{2014}+\frac{2013}{2}+\frac{2}{2013}+\frac{2012}{3}+\frac{3}{2013}+...+\frac{1008}{1007}+\frac{1007}{1008}\)

\(=\frac{2014}{1}+\frac{2013}{2}+...+\frac{1}{2014}\)

\(=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{1}{2014}+1\right)\)

\(=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)

\(=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)\)

\(\Rightarrow\frac{M}{N}=\frac{2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}=2015\)

Bình luận (0)
LC
Xem chi tiết
KJ
15 tháng 12 2019 lúc 21:19

Đặt 2003=x

Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]

Vì x.(x+5) +4 = (x+1).(x+4)

x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)

=> E=1

Vậy E=1

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
LC
26 tháng 8 2015 lúc 21:51

ai giải giúp mình đi mai phải nộp rồi

Bình luận (0)
KJ
15 tháng 12 2019 lúc 21:19

Đặt 2003=x

Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]

Vì x.(x+5) +4 = (x+1).(x+4)

x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)

=> E=1

Vậy E=1

Bình luận (0)
 Khách vãng lai đã xóa