Các số x,y ( x , y khác 0 ) thỏa mãn các điều kiện x^2*y+5=-3 và xy^2 -7 = 1 tìm x , y
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
Tìm các số thực x,y,z thỏa mãn dồng thời các điều kiện x-1/2=y+1/3=z-3/5 và 2x+y-z=0
Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
mà 2x+y-z=0
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)
Do đó: x=3; y=2; z=8
cho các số thực x và y thỏa mãn điều kiện \(x^2+y^2=2\)
tìm giá trị nhỏ nhất của biểu thức P=3(x+y)+xy
cho các số thực x và y thỏa mãn điều kiện x^2 + y^2 = 2 Tìm giá trị nhỏ nhất của biểu thức P = 3(x+y)+xy
tìm tất cả các số tự nhiên x y (x y khác 0) thỏa mãn
2.x+4/y - 2/x -5/xy = 1
tính giá trị của biểu thức
A=x-y/x+y biết x,y khác 0 và thỏa mạn điều kiện (x-y)(x-2y)=0
B=x/y biết x,y khác 0 và thỏa mạn điều kiện x+y/x-y=3/2
C=x/y biết x,y khác 0 và thỏa mãn điều kiện x+2y/x-y=3/5
CMR:x;y thuộc Q. Thì giá trị của biểu thức sau luôn luôn là số dương
M=3(x^2+1)+x^2y^2+y^2-2/(x+y)^2+5
Tìm các STN x,y,z khác 0 thỏa mãn điều kiện :x+y+z=xyz
Tìm các số thực x,y,z thỏa mãn đồng thời các điều kiện x-1/2=y+1/3=t-3/5 và 2x+y-z