tính A = 1/15+1/21+1/28+1/36+1/45+1/55+1/66
tính
1/15+1/21+1/28+1/36+1/45+1/55+1/66
\(\frac{1}{5.3}+\frac{1}{3.7}+\frac{1}{7.4}+\frac{1}{4.9}+...+\frac{1}{11.6}\)
\(=\frac{1}{5}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{6}\)
\(=\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{30}\)
Không ngờ em tự nhận mk là toán - anh - văn mà k làm được cái câu dễ này á thật nực cười nên bỏ tính khoe khoang đi nha
@Đào Trần Tuấn Anh Bạn làm sai rồi ạ
TÍNH 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45+1/55+1/66
Bài làm:
Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)
\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)
\(=\frac{1}{2}.\frac{11}{12}\)
\(=\frac{11}{24}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)
\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\times\left(1-\frac{1}{12}\right)\)
\(=2\times\frac{11}{12}\)
\(=\frac{11}{6}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\left(1-\frac{1}{12}\right)=2.\frac{11}{12}=\frac{22}{12}=\frac{11}{6}\)
tính thuận tiện
1/10+1/15+1/21+1/28+1/36+1/45+1/55+1/66+1/78
B=\(\dfrac{1}{6}\)+\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+\(\dfrac{1}{45}\)+\(\dfrac{1}{55}\)+\(\dfrac{1}{66}\)
=2(1/12+1/30+...+1/132)
=2(1/3-1/4+1/5-1/6+1/6-1/7+...+1/11-1/12)
=2(1/12+1/5-1/12)
=2*1/5=2/5
TÌM X BIẾT :
x/2017-1/10-1/15-1/21-1/28-1/36-1/45-1/55-1/66-1/78-1/91-1/105-1/120=5/8
BẠN NÀO BIẾT THÌ GIÚP MÌNH VỚI !!!!!!!
Tính A =\(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}+\dfrac{1}{66}+\dfrac{1}{78}\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
tớ làm hơi gọn nên có gì kho hiểu thì nói tớ
A= 1/15 + 1/21 + 1/28 + 1/36 + 1/45 + 1/55
A= 1/3 + 1/6 + 1/10 + 1/15 + 1/21 +1/28 + 1/36 +1/45 + 1/55
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)
\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)
\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)
\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)
\(A=2\times\dfrac{9}{22}\)
\(A=\dfrac{9}{11}\)
Tính A = \(\frac{1}{15}\)+ \(\frac{1}{21}\)+ \(\frac{1}{28}\)+ \(\frac{1}{36}\)+\(\frac{1}{45}\)+ \(\frac{1}{55}\)+ \(\frac{1}{66}\)