Những câu hỏi liên quan
MT
Xem chi tiết
OP
15 tháng 7 2016 lúc 7:14

a) \(S-1538=\left(1538+3425\right)-1538=1538+3425-1538=3425\)

\(S-3425=1538+3425-3425=1538\)

b) \(D+2451=9142-2451+2451=9142\)

\(9142-D=9142-\left(9142-2451\right)=9142-9142+2451=2451\)

Bình luận (0)
AV
Xem chi tiết
AV
17 tháng 7 2016 lúc 7:56

ai giup minh nha 

Bình luận (0)
NA
Xem chi tiết
DN
Xem chi tiết
PL
2 tháng 10 2018 lúc 19:10

1)a)=>x2+y2+2xy-4(x2-y2-2xy)

=>x2+y2+2xy-4.x2+4y2+8xy

=>-3.x2+5y2+10xy

Bình luận (0)
NH
Xem chi tiết
NT
23 tháng 1 2024 lúc 14:45

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

Bình luận (0)
TK
Xem chi tiết
H24
23 tháng 11 2019 lúc 19:39

căn bậc hai không có số âm

\(\sqrt{-1}\) đó

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 11 2019 lúc 20:04

a) ĐK : x ≥ 0 ; x ≠ 1

A=\(\frac{x-\sqrt{x}}{\sqrt{x}-1}:\frac{x+\sqrt{x}}{\sqrt{x}+1}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

=\(\sqrt{x}:\sqrt{x}\)

=1

Vậy A=1 với x ≥ 0 ; x ≠ 1

b) Vì A=1 nên không thể thay x

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
PQ
24 tháng 11 2019 lúc 18:33

a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ha
Xem chi tiết
TK
Xem chi tiết
NA
24 tháng 11 2019 lúc 8:27

a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2 \)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:

A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa