b) 10x + 6 – x(5x+ 2) = 0
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
tìm x,biết:
a.x^2-3x-x(x+2)=2
b.5x^3-3x^2+10x-6=0
a) x2 - 3x - x(x + 2) = 2
=> x2 - 3x - x2 - 2x = 2
=> -5x = 2
=> x = -2/5
b) 5x3 - 3x2 + 10x - 6 = 0
=>x2(5x - 3) + 2(5x - 3) = 0
=> (x2 + 2)(5x - 3) = 0
=> \(\orbr{\begin{cases}x^2+2=0\\5x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-2\left(ktm\right)\\5x=3\end{cases}}\)
=> x = 3/5
\(a,x^2-3x-x\cdot\left(x+2\right)=2\)
\(x^2-3x-x^2-2x=2\)
\(-5x=2\)
\(x=-\frac{2}{5}\)
\(b,5x^3-3x^2+10x-6=0\)
\(5x\cdot\left(x^2+2\right)-3\cdot\left(x^2+2\right)=0\)
\(\left(x^2+2\right)\cdot\left(5x-3\right)=0\)
\(\hept{\begin{cases}x^2+2=0\\5x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x\notin\varnothing\\x=\frac{3}{5}\end{cases}}}\)
Vậy......
Tìm x:
a) x2 + 5x + 6 = 0
b) x2 - 10x + 16 = 0
c) 2x2 + 7x + 3 = 0
d) x2 - 10x + 21 = 0
e) x2 - 2x - 3 = 0
f) x3 - 7x - 6 = 0
x2-10x+16=0
x2-2.5x+25-9=0
x2-2.5x+25 =9
(x-5)2 =32
x-5 =3
x =8
Mấy bài này dễ lắm,bn làm tương tự nha(câu nào không làm theo hằng đẳng thức được thì tách
a,
Ta có
x2+5x+6=x2+6x-x+6=0
=>x(x-1)+6(x-1)=0
=>(x+6)(x-1)=0
=> x=-6 hoặc x=1
KL
b,x2-10x+16=0
=>x2-8x-2x+16=0
=>x2-2x+16-8x=0
=>x(x-2)-8(x-2)=0
=>(x-8)(x-2)=0
=>x=8 hoặc x=2
KL
c,2x2+7x+3=0
=>2x2+6x+x+3=0
=>2x(x+3)+(x+3)=0
=>(x+3)(2x+1)=0
=>x=-1/2 hoặc x=-3
KL
d,
x2-10x+21=0
=>x2-3x-7x+21=0
=>x(x-3)-7(x-3)=0
=>(x-7)(x-3)=0
=>x=7 hoặc x=3
KL
e,x2-2x-3=0
=>(x2-2x+1)-4=0
=>(x-1)2-22=0
=>(x-1+2)(x-1-2)=0
=>(x+1)(x-3)=0
=> x=-1 hoặc x=3
KL
f,
x3-7x-6=0
=>x3+x2-x2-x-6x-6=0
=>x2(x+1)-x(x+1)-6(x+1)=0
=>(x2-x-6)(x+1)=0
=>(x2-3x+2x-6)(x+1)=0
=>[x(x+2)-3(x+2)](x+1)=0
=>(x+1)(x+2)(x-3)=0
=>x=-1 hoặc x=-2 hoặc x=3
KL
Bài 3
1.(x-1)(x+2)+5x-5=0
2.(3x+5)(x-3)-6x-10=0
3.(x-2)(2x+3)-7x2+14x=0
4.(x+1)(x-3)-15+5x=0
5.5(2x-1)(x+3)+5x-10x2=0
Bài4
1.3x-6+(x+1)(x-2)=0
2.4x2+6x-(2x+3)(3x-x)=0
3.5x-10-(2-x)(4+x)=0
4.10-10x+(x-1)(x-3)=0
5.20x2+30x-2(x-5)(2x+3)=0
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Bài 1: Tìm x
a) \(x^2-10x=-25\)
b) \(x^2-5x+6=0\)
c) \(2x+5-x^2-5x=0\)
Bài 1:
a) \(x^2-10x=-25\)
\(\Rightarrow x^2-10+25=0\)
\(\Rightarrow x^2-2.x.5+5^2=0\)
\(\Rightarrow\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=0+5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow x.\left(x-2\right)-3.\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}.\)
Chúc bạn học tốt!
a)
=0
=>\(x-5=0\)
=>\(x=5\)
b)
<=> (x-2)(x-3)=0
=>x-2=0 hoặcx-3=0
=>x=2 hoặc x=3
c) rút gọn rồi phân tích đa thức thành nhân tử
giải các phương trình sau:
a \(\sqrt{3x^2-17x+4}=3x-2\)
b \(2x^2-10x-3\sqrt{x^2-5x+4}+6=0\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Bài 1 : Phân tích
a) 3x + 18y
b) 15 ( x + 3 ) + 20x ( x + 8 )
c) 6 ( x - 9) - 3x ( y - x )
d) 2xy + 10x2 - x
e) 4ab2 - 28a + 16b
g) a( a+ b ) = ab ( a + b)
h) 30a2 + 6a - 6
Bài 2 : Tìm x
a) x2 + 10x = 0
b) 5x2 - 35x2 = 0
c) x + 1020 - 5x ( 5x - 1200) = 0
d) 7x2 - 49x = 0
b, \(15\left(x+3\right)+20x\left(x+8\right)=15x+45+20x^2+160x\)
\(=20x^2+175x+45=...\)
c, \(6\left(x-9\right)-3x\left(y-x\right)=6x-54-3xy+3x^2\)
d, \(2xy+10x^2-x\) không phân tích được nữa nhé
e, \(4ab^2-28a+16b\)không phân tích được nữa nhé
g, \(a\left(a+b\right)=ab\left(a+b\right)< =>\left(a+b\right)\left(a-ab\right)=0< =>\left(a+b\right)a\left(1-b\right)=0\)
h, \(30a^2+6a-6=\left(\sqrt{30}a\right)^2+2.\sqrt{30}.\frac{3}{\sqrt{30}}+\frac{3}{10}-\frac{63}{10}\)
\(=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}\right)^2-\sqrt{\frac{63}{10}}^2=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}-\sqrt{\frac{63}{10}}\right)\left(\sqrt{30}a+\frac{3}{\sqrt{30}}+\sqrt{\frac{63}{10}}\right)\)
tìm x:
a, 5x(12x-7)-6(10x^2+3)=0
b, 9x(3x+1-2x^2+4x-3)=0
a) Ta có: 5x(12x-7)-6(10x2+3) = 0
\(\Leftrightarrow\) 60x2-35x-60x2-18 = 0
\(\Leftrightarrow\) -35x = 18
\(\Leftrightarrow\) x = \(-\dfrac{18}{35}\)