cho tam giác ABC có AB > AC, tia phân giác AD. Lấy điểm M thuộc AD. Chứng minh AB - AC > MB - MC
Cho tam giác ABC có AB AC , AD là tia phân giác của góc A , M là điểm thuộc đoạn thẳng AD. Chứng minh MB – MC AB – AC.
/ Cho tam giác ABC có AB > AC , AD là tia phân giác của góc A , M là điểm thuộc đoạn thẳng AD. Chứng minh: MB – MC < AB – AC.
Trên cạnh AB lấy lấy điểm N sao cho AN=AC.
=> \(\Delta\)AMC=\(\Delta\)AMN (c.g.c) => MC=MN (2 cạnh tương ứng)
Ta có: AB-AC=AB-AN=NB (Thay AN=AC)
Xét \(\Delta\)MNB: NB>MB-MN (Bất đẳng thức tam giác) , MN=MC => NB>MB-MC
Mà NB=AB-AC => AB-AC>MB-MC hay MB-MC<AB-AC (đpcm)
Mk cũng giống bn!~Ai k mk,mk k trả lại gấp 5 lần lun nha!~=))
Chúc các bn hk tốt nha!~^^
Cho tam giác ABC (AB < AC), Trên ta AC lấy điểm E, trên tia AB lấy điểm F sao cho AE = AB, AF = AC, Đường thẳng EF cắt BC tại D.
a) Chứng minh AD là tia phân giác của góc A
b) Trên cạnh AD lấy điểm M bất kì. Chứng minh MC - MB < AC - AB
a:
AB+BF=AF
AE+EC=AC
mà AB=AE và AC=AF
nên BF=EC
Xét ΔAEF và ΔABC có
AE=AB
\(\widehat{EAF}\) chung
AF=AC
Do đó: ΔAEF=ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
\(\widehat{DFB}=\widehat{DCE}\)
Do đó: ΔDBF=ΔDEC
=>DB=DE
Xét ΔABD và ΔAED có
AB=AE
BD=ED
AD chung
Do đó: ΔABD=ΔAED
=>\(\widehat{BAD}=\widehat{EAD}\)
=>AD là phân giác của \(\widehat{BAC}\)
b: Xét ΔABM và ΔAEM có
AB=AE
\(\widehat{BAM}=\widehat{EAM}\)
AM chung
Do đó: ΔABM=ΔAEM
=>MB=ME
AC-AB=EC
mà EC>MC-ME
và MC=MF
nên AC-AB>MC-ME=MC-MB(ĐPCM)
Cho Tam giác ABC có AB>AC. Kẻ tia phân giác AD của góc A (D thuộc BC). Lấy M trên đoạn thẳng AD (M không trùng A). Chứng minh rằng: AB-AC>MB-MC
Trên cạnh AB lấy điểm N sao cho AN = AC.
\(\Delta AMC=\Delta AMN\)(c.g.c), suy ra \(AC=AN,MC=MN\)
Áp dụng BĐT tam giác cho \(\Delta BMN\), ta có:
\(AB-AC=AB-AN=BN>MB-MN=MB-MC\)
108. Tam giác ABC có AB>AC, phân giác AD. Lấy điểm M thuộc AD ( M không trùng với A ). Chứng minh rằng AB-AC>MB-MC
(Vẽ hình và làm cho 2 tick)
diinh a hai canh ben la b va c m la diem nam trong tam giac nha
Cho tam giác ABC ( AB < AC ) , AM là tia phân giác của góc A ( M thuộc BC ). Trên AC lấy D sao cho AD = AB
a) Chứng minh BM = MD
b) Gọi K là giao điểm AB, DM. Chứng minh : Tam giác AKC là tam giác cân
c) So sánh MB, MC
a) Bạn xét 2 tam giác ABM và tam giác ADM ( c-g-c )
Suy ra BM = DM ( 2 cạnh tương ứng )
b) Xét 2 tam giác AKD và tam giác ACB ( g-c-g )
Suy ra AK = AC ( 2 cạnh tương ứng )
Suy ra tan giác AKC cân tại A
Mấy cái tam giác bằng nhau bạn tự chứng minh
Chưa có câu c kìa
Vs ng` ta đăng bài vì ko lm đc sao m nói tự chứng minh như đúng rồi ý , z nói lm cái j???
cho tam giác ABC có AB>AC. AD là tia phân giác của góc A. M là 1 điểm thuộc đoạn thẳng AD.Chứng minh MB-MC<AB-AC
Tam giác ABC có AB > AC, phân giác AD. Lấy một điểm M thuộc AD (M không trùng với A). Chứng minh rằng AB – AC > MB – MC
Ai nhanh + đúng tặng 3 tick
Vẽ hình càng tốt.
Lấy F thuộc AB sao cho AF = AC
Xét tam giác AFM và AMC ta có:
AM: chung
AF = AC
góc AFM = MAC
=> \(_{\Delta AFM=\Delta AMC}\) (c-g-c)
=> MF = MC
Trong tam giác MBF có: MB - MF < BF
Mà MF = MC => MB - MC < BF
Mà BF = AB - AF = AB - AC
Vậy AB - AC > MB - MC (đpcm)
cho tam giác ABC,ab>ac kẻ tia phân giác ad của góc a d thuộc bc trên tia ma lấy điểm m .cmr ab-ac>mb-mc