GT

Cho tam giác ABC (AB < AC), Trên ta AC lấy điểm E, trên tia AB lấy điểm F sao cho AE = AB, AF = AC, Đường thẳng EF cắt BC tại D.
a) Chứng minh AD là tia phân giác của góc A
b) Trên cạnh AD lấy điểm M bất kì. Chứng minh MC - MB < AC - AB

NT
19 tháng 11 2023 lúc 18:17

a:

AB+BF=AF

AE+EC=AC

mà AB=AE và AC=AF

nên BF=EC

Xét ΔAEF và ΔABC có

AE=AB

\(\widehat{EAF}\) chung

AF=AC

Do đó: ΔAEF=ΔABC

=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

\(\widehat{DFB}=\widehat{DCE}\)

Do đó: ΔDBF=ΔDEC

=>DB=DE

Xét ΔABD và ΔAED có

AB=AE

BD=ED

AD chung

Do đó: ΔABD=ΔAED

=>\(\widehat{BAD}=\widehat{EAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔAEM có

AB=AE

\(\widehat{BAM}=\widehat{EAM}\)

AM chung

Do đó: ΔABM=ΔAEM

=>MB=ME

AC-AB=EC

mà EC>MC-ME

và MC=MF

nên AC-AB>MC-ME=MC-MB(ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
BL
Xem chi tiết
PA
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
DP
Xem chi tiết
LT
Xem chi tiết
KJ
Xem chi tiết
NT
Xem chi tiết