cho tam giac ABC vuong tai A AB=9cm BC=15cm tren tia doi cua tia AB lay diem E...
Cho tam giac ABC vuong tai A co AB=9cm, BC= 15cm
a, Tinh do dai canh AC va so sanh cac goc cua tam giac ABC
b, Tren tia doi cua tia AB lay diem D sao cho A la trung diem cua doan thang BD . Chung minh tam giac BCD can
c, E la trung diem canh CD, BE cat AC o I. CHung minh DI di qua trung diem canh BC
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
cho tam giasc ABC can tai A tren tia doi cua tia BC lay diem D tren tia doi cua tia CB lay diem E sao cho BD=CE ke DH vuong goc voi AB ke EK vuong goc voi AC a,tam giac DAE la tam giac j | b,chung minh DH = EK| c,chung minh tam giac ADH =tam giac AEK | d,goi O la giao diem cua DH va EK chung minh tam giac DOE can | e, chung minh AO la phan giac cua goc DAE | g,goi I la trung diem cua BC chung minh rang ba diem A,I,O thang hang
cho tam giac ABC vuong tai A co AB=9cm BC=15cm tren tia doi cua tia AB lay diem D sao cho A la trung diem cua doan thang AB
a, tinh do dai canh AC va ss cac goc cua tam giac ABC
b, cm tam giac BCD can
c, goi E la trung diem cua canh CD ,BE cat AC o I .cm DI ik qua trung diem cua canh BC
(ve hinh )
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCBD có
CA,BE là đường trung tuyến
CA cắt BE tại I
Do đó: DI đi qua trung điểm của BC
Cho tam giac abc can tai a ( Â < 90 độ ) . Vẽ AH vuong goc BC tai H . Kẻ HD vuong goc AB tai D , HE vuong goc AC tai E . TRen tia doi cua tia BA lay diem M sao cho BM = BM, Trên tia doi cua tia Ca lay diem N sao cho CE = CM . Hoi tam giac AMN la tam giac gì
Cho tam giac ABC vuong tai A. Tren tia doi cua tia AB lay diem K sao cho BK=BC. Ve KH vuong goc voi BC tai H va cat Ac tai E
cho tam giac abc can tai a goc a la gic tu,tren tia doi bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ce .tren tia doi ca lay diem i sao cho ci=ca.a) cm tam giac abd=tam giac ice.b)chung minh ab+ac<ad+ae.c)tu d va e ke duong thang vuong goc voi bc cat ab,ai theo thu tu mn .cm bm=cn.d)chung minh chu vi tam giac abc<chu vi tam giac amn
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Cho tam giac ABC vuong tai A co AB=AC . Goi D la trung diem cua AC . Tren tia doi cua tia DB lay diem E sao cho DB=DE
a) Chung minh : tam giac ADB=tam giac CDE
b) Tren tia doi cua tia AB lay diem I sao cho AD = AI. chung minh : tam giac CDE = tam giac AIC
c) chung minh CI vuong goc EB
cho tam giac ABC vuong tai A , diem D thuoc canh huyen BC . Ke DH vuong goc voi AC (H thuoc AC ) ,tren tia doi cua tia HD lay diem K sao cho HK=HD. Ke DM vuong goc voi AB (M thuoc AB) ,tren tia doi cua tia MD lay diem N sao cho MN=MD. Chung minh A la trung diem cua NK
cho tam giac abc can tai a co goc bac =50do tren tia doi cua tia bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ba ce=ca tinh goc dae
cho tam giac abc deu ve ben ngoai tam giac cac tam giac abd vuong can tai b tam giac ace vuong can tai c tinh so goc nhon cua ade
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)