Những câu hỏi liên quan
PC
Xem chi tiết
PC
Xem chi tiết
HU
Xem chi tiết
DL
17 tháng 6 2016 lúc 12:22

Từ AB=BC=CA

suy ra: AB+BC=2CA > CA

BC + AC = 2AB > AB

AB+AC = 2BC > BC

Suy ra A,B,C là 3 đỉnh của 1 tam giác vì nó thỏa mãn tính chất: Tổng 2 cạnh lớn  hơn cạnh còn lại.

Bình luận (0)
TH
Xem chi tiết
NL
4 tháng 10 2021 lúc 23:08

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)

\(=abc-abc+1-1=0\) (đpcm)

Bình luận (0)
H24
Xem chi tiết
LT
Xem chi tiết
NL
13 tháng 11 2021 lúc 14:13

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

Bình luận (0)
LL
Xem chi tiết
TG
21 tháng 4 2021 lúc 16:24

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) 

Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)

=> a = b = c

\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)

\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)

= 0

 

Bình luận (0)
VD
Xem chi tiết
VD
Xem chi tiết
KB
24 tháng 8 2020 lúc 20:28

Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)

\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)

CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)

          \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......

(Dấu = xảy ra (=) a=b=c=1/3

Bình luận (0)
 Khách vãng lai đã xóa