tìm các số nguyên x,y thỏa mãn
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
1.Tìm số nguyên x biết
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
2.tìm các số nguyên x, y thỏa mãn
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
Mình đang cần gấp! Cảm ơn nhiều
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
Bài 1
1.Tìm các số tự nhiên x;y thỏa mãn:\(x^2\)+\(3^y\)=3026
2.Tìm các số nguyên dương x;y thỏa mãn:\(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}=\frac{1}{2}\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
câu a làm cách khác đi bạn
tìm các số nguyên x;y thỏa mãn a)\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
b)tìm số hữu tỉ x thỏa mãn tổng của số đó và nghịch đảo của số đó là 1 số nguyên
a, 4(x+y+z) = xyz
b, x+y+z -9- -xyz = 0
2.Tìm các số nguyên dương x,y,z,t thỏa mãn:
5(x+y+z+t)+10= 2xyzt
3.Tìm các số nguyên dương x,y,z,t thỏa mãn:
\(\frac{1}{^{x^2}}\)+\(\frac{1}{y^2}\)+\(\frac{1}{z^2}\)+\(\frac{1}{t^2}\)= 1
Bạn nào trả lời nhanh, đúng : mk chọn.
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
post từng câu một thôi bn nhìn mệt quá
Tìm các số nguyên dương x, y thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{2}{3}\)
Tìm các số nguyên x,y thỏa mãn \(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\Rightarrow\frac{1}{y}=\frac{x-3}{8}\)
\(\Rightarrow y\left(x-3\right)=8\)
Ta có bảng sau:
y | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
x - 3 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | 11 | 4 | -5 | 2 | 7 | 5 | -1 | 1 |
Vậy các cặp số (x,y) là: (1,11) ; (8,4) ; (-1,-5) ; (-8,2) ; (2,7) ; (4,5) ; (-2,-1) ; (-4,1)
bài 1: tìm x nguyên để các phân số sau có giá trị là số nguyên
a) A= \(\frac{-3}{2x-1}\)
b) B= \(\frac{4x+5}{2x-1}\)
bài 2: tìm x,y thỏa mãn
a) \(\frac{3}{y}+\frac{y}{3}=\frac{5}{6}\)
b) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Tìm các cặp số nguyên x,y thỏa mãn: \(\frac{x+y}{x^2+xy+y^2}=\frac{5}{19}\)
\(\frac{x+y}{x^2+xy+y^2}=\frac{5}{19}\Leftrightarrow19\left(x+y\right)=5\left(x^2+xy+y^2\right)\) (*)
từ pt (*) ta thấy \(19\left(x+y\right)⋮5\) mà (19,5)=1 \(\Rightarrow x+y⋮5\Rightarrow x+y=5k\left(k\in Z\right)\)
Thay x+y=5k vào (*) ta được: \(x^2+xy+y^2=19k\) (1)
Lại có: \(x+y=5k\Leftrightarrow x^2+2xy+y^2=25k^2\) (2)
Lấy (2) - (1) ta có: \(xy=25k^2-19k\)
Xét \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\ge0\Leftrightarrow25k^2-4\left(25k^2-19k\right)\ge0\Leftrightarrow75k^2-76k\le0\)
\(\Leftrightarrow0\le k\le\frac{76}{75}\Rightarrow k\in\left\{0;1\right\}\)
-Nếu k=0 thì \(\hept{\begin{cases}x+y=0\\xy=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
-Nếu k=1 thì \(\hept{\begin{cases}x+y=5\\xy=6\end{cases}\Leftrightarrow\left(x;y\right)=\left(2;3\right);\left(3;2\right)}\)