1/2016.2015+1/2015.2014+1/2013.2014+...+1/1.2
A= 1/ 2016.2015 + 1/2015.2014+ 1/2013.2014+...+1/1.2
A= 1/1.2 + 1/2.3 +...........+ 1/2016.2015
= 1 - 1/2 +1/2 - 1/3 + ............+1/2015 - 1/2016
= 1 - 1/2016
= 2015/2016
tính A:
A = 1/2016.2015 + 1/2015.2014 + 1/2013.2014 + 1/2013.2016 + ... + 1/1.2
LƯU Ý : TRÌNH BÀY LỜI GIẢI RÕ RÀNG
DẤU / BIỂU THỊ PHÂN SỐ; DẤU . BIỂU THỊ DẤU NHÂN
A=1/2015-1/2016+1/2014-1/2015+1/2013-1/2014+.............+1-1/2
A=1/2016+1
A=2017/2016
chúc học tốt
Đáp án :
A = 1/1.2 + ... + 1/2013.2014 + 1/2014.2015 + 1/2015.2016
= 1 + 1/2 - 1/2 + .... + 1/2013 - 1/2014 + 1/2014 - 1/2015 + 1/2015 - 1/2016
= 1 + 0 + .... + 0 + 0 + 0 - 1/2016
= 1 - 1/2016
= 2015/2016
Vậy A = 2015/2016
\(\frac{1}{2016.2015}\) + \(\frac{1}{2015.2014}\) + \(\frac{1}{2013.2014}\) + ... + \(\frac{1}{1.2}\)
bai nay ban viet nguoc day so lai roi giai nhu binh thuong la duoc
\(1/2016.2015+1/2015.2014+...+1/1.2\)
\(\frac{1}{2016.2015}+\frac{1}{2015.2014}+...+\frac{1}{1.2}\)
\(=\frac{1}{1.2}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(=\frac{1}{1}-\frac{1}{2}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{2015}-\frac{1}{2015}\right)-\frac{1}{2016}\)
\(=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
~ Hok tốt ~
=1/2016-1/2015+1/2015-1/2014+...+1-1/2
=1/2016-1/2
=-1007/2016
\(\frac{1}{2016.2015}+\frac{1}{2015.2014}+...+\frac{1}{1.2}\)
\(=\frac{1}{2016}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2014}+...+\frac{1}{2}-\frac{1}{1}\)
\(=\frac{1}{2016}-1\)
\(=-\frac{2015}{2016}\)
Bài 3 : Tính :
A = \(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+....+\frac{1}{1.2}\)
\(A=\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{1.2}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
Vậy \(A=\frac{2015}{2016}\).
Mình viết ngược lại cho dễ làm xD
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}+\frac{1}{2015\cdot2016}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\frac{1}{1}-\frac{1}{2016}\)
\(A=\frac{2015}{2016}\)
Sai thì bỏ quá :3
= 2015/2016 nha bạn
1)Cho A=\(\dfrac{2016^{2016}+2}{2016^{2016}-1}\)và B=\(\dfrac{2016^{2016}}{2016^{2016}-3}\)
So sánh A và B
2)Tính \(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2013.2014}+..+\dfrac{1}{1.2}\)
CẢM ƠN VÌ ĐÃ GIÚP MIK NHÉ
1. Ta có: \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(m\in Z\right)\)
\(B=\dfrac{2016^{2016}}{2016^{2016}-3}>\dfrac{2016^{2016}+2}{2016^{2016}-3+2}=\dfrac{2016^{2016}+2}{2016^{2016}-1}=A\)
Vậy A > B
2. \(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+...+\dfrac{1}{1.2}\)
= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
= \(1-\dfrac{1}{2016}\)
=\(\dfrac{2015}{2016}\)
-1/2016.2015-1/2015.2014-1/2013.2012-...-1/3.2-1/2.1
=\(-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2015}+\frac{1}{2014}-...-\frac{1}{2}+1\)
=\(-\frac{1}{2016}+1=\frac{2015}{2016}\)
Ta có :\(\frac{-1}{2016.2015}-\frac{1}{2015.2014}-\frac{1}{2014.2013}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
= \(-\left(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
= \(-\left(\frac{1}{2016}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2014}-\frac{1}{2013}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)
= \(-\left(\frac{1}{2016}-1\right)\)
= \(-\left(-\frac{2015}{2016}\right)\)
= \(-\frac{2015}{2016}\)
Mk làm kĩ lắm rồi. ko tích nữa mk cũng chịu bạn luôn @@
tính
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)
\(=\frac{1}{2016}\)
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)
\(=0+\frac{1}{2016}=\frac{1}{2016}\)
F = \(\dfrac{-1}{2016.2015}-\dfrac{1}{2015.2014}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(F=-\dfrac{1}{1.2}-\dfrac{1}{2.3}-...-\dfrac{1}{2014.2015}-\dfrac{1}{2015.2016}\)
\(\Rightarrow-F=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}=1-\dfrac{1}{2016}=\dfrac{2015}{2016}\)\(\Rightarrow F=\dfrac{-2015}{2016}\)
Giải:
\(F=\dfrac{-1}{2016.2015}-\dfrac{1}{2015.2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(\Leftrightarrow F=-\left(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+\dfrac{1}{2013.2012}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(\Leftrightarrow F=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}+\dfrac{1}{2013.2014}+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)
\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2016}\right)\)
\(\Leftrightarrow F=-\dfrac{2015}{2016}\)
Vậy ...