Những câu hỏi liên quan
LH
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
TB
10 tháng 10 2019 lúc 14:24

Từ giả thiết áp dụng bđt Cauchy-Schwarz: VT≥(x2+y2)2a+b=1a+b=VPVT≥(x2+y2)2a+b=1a+b=VP

Dấu "=" xảy ra nên x2a=y2b=1a+bx2a=y2b=1a+b

hoặc biến đổi 1=(x2+y2)21=(x2+y2)2 (nếu đề bài cho a,b<0a,b<0) thì cũng suy ra như trên

⇔x2006a1003=y2006b1003=1(a+b)1003⇔x2006a1003=y2006b1003=1(a+b)1003
⇒x2006a1003+y2006b1003=2(a+b)1003⇒x2006a1003+y2006b1003=2(a+b)1003

tham khảo nhé bài này cũng dạng tương tự mik chép từ vở mik ra 

nó chỉ khác chữ thôi còn thông số giống hệt 

Bình luận (0)
TB
10 tháng 10 2019 lúc 14:26

đề bài của mik nè 

b) Cho {x2+y2=1x4a+y4b=1a+b}{x2+y2=1x4a+y4b=1a+b}

CM

x2006a1003+y2006b1003=2(a+b)1003

Bình luận (0)
TT
Xem chi tiết
QK
Xem chi tiết
PM
Xem chi tiết
ND
Xem chi tiết
AH
29 tháng 11 2017 lúc 21:56

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)

\(\Leftrightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)

Dấu bằng xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\). Do đó \(\frac{x^2}{a}=\frac{y^2}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow \frac{x^{2006}}{a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{(a+b)^{1003}}\)

\(\Rightarrow \frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{y^{1003}}=\frac{2}{(a+b)^{1003}}\)

Do đó ta có đpcm.

Bình luận (1)
LH
Xem chi tiết
NA
8 tháng 2 2018 lúc 23:03

 \(\text{Đặt }x^2=m\ge0;y^2=n\ge0\Rightarrow m+n=1\)

\(\text{Ta có: }\frac{m^2}{a}+\frac{n^2}{b}=\frac{\left(m+n\right)^2}{a+b}\Leftrightarrow\left(a+b\right)\left(\frac{m^2}{a}+\frac{n^2}{b}\right)=\left(m+n\right)^2\left(\text{BĐT Bunhiacopki}\right)\)\(\Leftrightarrow m^2+n^2+\frac{b}{a}m^2+\frac{a}{b}n^2=m^2+n^2+2mn\)

\(\Leftrightarrow\frac{b}{a}m^2+\frac{a}{b}n^2-2mn=0\left(1\right)\)

\(\text{+Nếu }\frac{a}{b}< 0\text{ thì (1)}\Leftrightarrow-\left(\sqrt{-\frac{b}{a}m}\right)^2-2mn-\left(\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}\right)^2=0\)

\(\Leftrightarrow\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}=0\Leftrightarrow m=n=0\left(\text{loại}\right)\)

\(\text{Xét }\frac{a}{b}>0;\left(1\right)\Leftrightarrow\left(\sqrt{\frac{b}{a}m}\right)^2-2mn+\left(\sqrt{\frac{a}{b}n}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}-\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\sqrt{\frac{b}{a}m}=\sqrt{\frac{a}{b}n}\)

\(\Leftrightarrow bm=an\Leftrightarrow bx^2=ay^2\left(a,b>0\right)\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\left(\frac{x^2}{a}\right)^{1003}+\left(\frac{y^2}{b}\right)^{1003}=\frac{1}{\left(a+b\right)^{1003}}+\frac{1}{\left(a+b\right)^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\left(đpcm\right)\)

Bình luận (0)