Những câu hỏi liên quan
NN
Xem chi tiết
HA
Xem chi tiết
NL
26 tháng 2 2021 lúc 19:25

a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(TH_1:3x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

\(TH_2:-2x-7=0\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

b) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(TH_1:x=0\)

\(TH_2:x-1=0\)

\(\Leftrightarrow x=1\)

\(TH_3:2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)

\(TH_1:3x+4=0\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

\(TH_2:2x-4=0\)

\(\Leftrightarrow x=2\)

Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Rightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x-9x=-6-16+12\)

\(\Leftrightarrow11x=-10\)

\(\Leftrightarrow x=-\dfrac{10}{11}\)

Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)

Bình luận (0)
H24
26 tháng 2 2021 lúc 19:40

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow3x+1=5x+8\)

\(\Leftrightarrow3x-5x=8-1\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=\dfrac{-7}{2}\)

Vậy \(X=\dfrac{-7}{2}\)

b) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow9x^2-16-3x^2-4x=0\)

\(\Leftrightarrow6x^2-4x-16=0\)

\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Leftrightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x+16-12-9x+6=0\)

\(\Leftrightarrow11x+10=0\)

\(\Leftrightarrow x=\dfrac{-10}{11}\)

Vậy \(x=\dfrac{-10}{11}\)

Bình luận (0)
NT
26 tháng 2 2021 lúc 22:04

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\-2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

Bình luận (0)
EN
Xem chi tiết
TT
22 tháng 12 2020 lúc 20:28

Rảnh rỗi thật sự .-.

undefined

Bình luận (0)
PT
Xem chi tiết
NT
22 tháng 3 2021 lúc 21:19

a) Ta có: \(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)

Bình luận (0)
HL
Xem chi tiết
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 20:28

loading...

loading...

loading...

Bình luận (0)
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 20:27

a: ĐKXĐ: \(x\in R\)

\(\sqrt{\left(2x+3\right)^2}=5\)

=>|2x+3|=5

=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{9\left(x-2\right)^2}=18\)

=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)

=>\(3\cdot\left|x-2\right|=18\)

=>\(\left|x-2\right|=6\)

=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2

\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)

=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)

=>\(4\sqrt{x-2}=40\)

=>\(\sqrt{x-2}=10\)

=>x-2=100

=>x=102(nhận)

d: ĐKXĐ: \(x\in R\)

\(\sqrt{4\left(x-3\right)^2}=8\)

=>\(\sqrt{\left(2x-6\right)^2}=8\)

=>|2x-6|=8

=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

e: ĐKXĐ: \(x\in R\)

\(\sqrt{4x^2+12x+9}=5\)

=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)

=>\(\sqrt{\left(2x+3\right)^2}=5\)

=>|2x+3|=5

=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

f: ĐKXĐ:x>=6/5

\(\sqrt{5x-6}-3=0\)

=>\(\sqrt{5x-6}=3\)

=>\(5x-6=3^2=9\)

=>5x=6+9=15

=>x=15/5=3(nhận)

Bình luận (0)
DH
Xem chi tiết
TT
18 tháng 9 2015 lúc 11:38

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

Bình luận (0)
HF
Xem chi tiết
BB
6 tháng 3 2018 lúc 22:19

x^3 - 9X^2 +19x -11 =0

<=> (x^3 - x^2) - (8x^2 - 8x) +(11x-11)=0

<=> x^2(x-1) - 8x(x-1) + 11(x-1)=0

<=> (x-1)(x^2-8x+11) = 0

<=> x-1=0

<=> x=1

Bình luận (0)
BB
6 tháng 3 2018 lúc 22:13

9x^3 - 6x^2 +12x=8

<=> 9x^3-6x^2+12x-8=0

<=. 3x^2(3x-2) + 4(3x-2)=0

<=> (3x-2)(3x^2 +4 ) =0

<=> 3x-2 = 0 (do 3x^2 +4 >= 4 >0)

<=> x= 2/3

Bình luận (0)