Chứng minh rằng 9 không là ước (x-2)×(x+5)+11
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng với mọi số nguyên x, ta có:
a,(a-1)(a+2)+12 không chia hết cho 9
b, 49 không là ước của(a+2)(a+9)+21
Các pạn giải ra hộ mình nhé. Thank you
Chứng tỏ rằng 11 là ước của số có dạng abba
abba = 1000a + 100b + 10b + a = 1001a + 110b
= 11(91a + 10b) ⋮ 11.
Chứng minh rằng : 14 là ước của abba .
Chứng minh rằng với mọi số nguyên x, ta có:
a,(a-1)(a+2)+12 không chia hết cho 9
b, 49 không là ước của(a+2)(a+9)+21
Các pạn giải ra hộ mình nhé. Thank you very much,much,much,much,much,much,much,much,much,much,much,much,much,...
Bài 5 : Chứng minh rằng nếu a là bội của c thì
a) (-a) là bội của b
b) ( -b) là ước của a
chứng minh rằng nếu A=p^2 thì A có số lượng ước là 1 số lẻ
Lời giải:
Nếu $A=p^2$ với $p$ là số nguyên tố thì $A$ có các ước: $1, p, p^2$
$\Rightarrow A$ có 3 ước.
$\Rightarrow A$ có số lượng ước là 1 số lẻ.
Chứng minh rằng tích các ước của 50 là 503
Lời giải:
$Ư(50)=\left\{1; 2; 5; 10; 25; 50\right\}$
Tích các ước của 50 là:
$1.2.5.10.25.50=(1.5.10)(2.25).50=50.50.50=50^3$
Ta có đpcm.
a,chứng tỏ rằng abab là bội của 101
b, chúng tỏ rằng 37 là ước của aaabbb
abab=ab.100+ab=ab.101 chia hết cho 101 nên là bội của 101
b) aaabbb=aaa.1000+bbb=a.111.1000+b.111=111(1000a+b) chia hết cho 37 ( vì 111 chia hết cho 37)
a)\(abab=ab\cdot100+ab\cdot1=ab\cdot101\)
Vì \(101⋮101\Rightarrow ab\cdot101⋮101\Rightarrow abab⋮101\)
=>abab là bội của 101
b)\(aaabbb=111000\cdot a+b\cdot111\)
Mà \(111000⋮37\)và\(111⋮37\)
\(\Rightarrow aaabbb⋮37\)
=>37 là ước aaabbb
a) Ta có: \(\overline{abab}=\overline{ab}.101⋮101\)
\(\Rightarrow\overline{abab}⋮101\)
b) Ta có: \(\overline{aaabbb}=a.111000+111.b=111.\left(1000.a+b\right)⋮37\) ( vì \(111⋮37\) )
\(\Rightarrow\overline{aaabbb}⋮37\)
Bài 1 . Cho a và b là hai số tự nhiên , A là tập hợp các ước chung của a và b , B là tập hợp các ước chung của 7a + 5b và 4a + 3b . Chứng minh rằng :
a) A = B ;
b) ( a , b ) = ( 7a + 5b , 4a + 3b ).
Giải : a) Bước 1 : Gọi d \(\in\)ƯC ( a ; b ) , ta sẽ chứng minh rằng d \(\in\)ƯC ( 7a + 5b , 4a + 3b )
Thật vậy , a và b chia hết cho d nên 7a + 5b chia hết cho d , 4a + 3b chia hết cho d .
Bước 2 : Gọi d' \(\in\)ƯC ( 7a + 5b , 4a + 3b ) , ta sẽ chứng minh d' \(\in\)ƯC ( a ; b ) .
Thật vậy , 7a + 5b và 4a + 3b chia hết cho d' nên khử b , ta được 3 ( 7a + 5b ) - 5 ( 4a + 3b ) chia hết cho d' , tức là a chia hết cho d' ; khử a ta được 7 ( 4a + 3b ) - 4 ( 7a + 5b ) chia hết cho d' , tức là b chia hết cho d' . Vậy d' \(\in\)ƯC ( a ; b ) ,
Bước 3 : Kết luận A = B
b) Ta đã có A = B nên số lớn nhất thuộc A bằng số lớn nhất thuộc B , tức là ( a ; b ) = ( 7a + 5b , 4a + 3b ) ( ĐPCM )