Những câu hỏi liên quan
NA
Xem chi tiết
H24
5 tháng 6 2021 lúc 22:44

Ta có: \(\Delta'=32>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)

Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\) 

 

Bình luận (0)
NT
Xem chi tiết
LA
Xem chi tiết
NT
4 tháng 7 2023 lúc 0:14

loading...

Bình luận (0)
LA
Xem chi tiết
NT
5 tháng 4 2022 lúc 19:54

Bạn ghi lại đề đi bạn

Bình luận (0)
LA
Xem chi tiết
NT
5 tháng 4 2022 lúc 20:01

Cái chỗ giữa 2(m-2)x và m2 là dấu gì bạn ơi?

Bình luận (5)
LA
Xem chi tiết
NT
3 tháng 7 2023 lúc 22:58

Sửa đề: x^2+2(m-2)x+m^2=0

a: Δ=(2m-4)^2-4m^2

=4m^2-16m+16-4m^2=-16m+16

Để phương trình có hai nghiệm phân biệt thì -16m+16>0

=>m<1

b: Sửa đề: x1^2+x2^2=5

=>(x1+x2)^2-2x1x2=5

=>(2m-4)^2-2m^2=5

=>4m^2-16m+16-2m^2-5=0

=>2m^2-16m+11=0

=>\(m=\dfrac{8-\sqrt{42}}{2}\)(Vì m<1)

Bình luận (0)
H24
Xem chi tiết
DL
1 tháng 6 2016 lúc 18:45
Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)\(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)\(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài. 
Bình luận (0)
DY
Xem chi tiết
NL
12 tháng 9 2021 lúc 17:38

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

Bình luận (1)
TV
Xem chi tiết