Những câu hỏi liên quan
NA
Xem chi tiết
VD
Xem chi tiết

Gọi a là cạnh đối diện góc A, tương tự đối với b và c. Gọi chiều cao tương ứng với cạnh a là ha, tương tự đối với hb và hc. Ta có ha.a=hb.b=hc.c=2S, từ ha.a=hb.b => a/b=hb/ha=65/60=13/12 => đặt a=13k (k khác 0), b=12k (k khác 0). Từ hb.b=hc.c => b/c=hc/hb=156/65=12/5 => đặt c=5k (k khác 0), nhận thấy a;b và c thỏa mãn Pytago => theo định lý Pytago đảo thì tam giác ABC vuông tại A. Giả sử AH,BK,CL là đường cao từ các đỉnh. Theo hệ thức lượng trong tam giác vuông ta có AC^2=CH.BC <=> CH=(AC^2)/BC = 144k/13. Xét tam giác ACH có góc H=90 độ, nên áp dụng định lý Pytago ta có AH^2 + CH^2 = AC^2 => AC^2 - CH^2 = AH^2 <=> (12k)^2 - (144k/13)^2 = 60^2, sau đó ta tính được k=13 => AB=65mm; AC=156mm => diện tích ABC = (65 x 156 )/ 2 = 5070 mm^2

mình lớp 5 mong bạn thông cảm

Bình luận (0)
LT
Xem chi tiết
NN
24 tháng 2 2016 lúc 19:31

Muốn tính diện tích hình tam giác ta lấy các cạnh nhân lại với nhau

Vậy sẽ là bằng : 60 x 65 x 156 = 608400 (cm)

Bình luận (0)
LT
24 tháng 2 2016 lúc 19:20

bạn nào giúp mình với

Bình luận (0)
LD
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
DC
8 tháng 5 2016 lúc 9:44

hình như dựa vào tính chất dãy tỉ số bằng nhau ak pn. mk cx chỉ nhớ z thui chứ hk chắc cko lém :)

Bình luận (0)
NH
26 tháng 2 2017 lúc 7:57

Rảnh

Bình luận (0)
QL
Xem chi tiết
KT
25 tháng 9 2023 lúc 16:40

Tham khảo:

a) Đặt \(a = BC,b = AC,c = AB.\)

Ta có: \(p = \frac{1}{2}(15 + 18 + 27) = 30\)

Áp dụng công thức heron, ta có:

\({S_{ABC}} = \sqrt {30(30 - 15)(30 - 18)(30 - 27)}  = 90\sqrt 2 \)

Và \(r = \frac{S}{p} = \frac{{90\sqrt 2 }}{{30}} = 3\sqrt 2 \)

b) Gọi, H, K lần lượt là chân đường cao hạ từ A và G xuống BC, M là trung điểm BC.

G là trọng tâm tam giác ABC nên \(GM = \frac{1}{3}AM\)

\(\begin{array}{l} \Rightarrow GK = \frac{1}{3}.AH\\ \Rightarrow {S_{GBC}} = \frac{1}{3}.\,{S_{ABC}} = \frac{1}{3}.90\sqrt 2  = 30\sqrt 2 .\end{array}\)

Bình luận (0)
NM
Xem chi tiết