Những câu hỏi liên quan
ND
Xem chi tiết
LP
20 tháng 6 2023 lúc 21:37

1) Bằng phương pháp quy nạp, dễ dàng chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\). Do đó, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\left(n+1\right)\left(2n+1\right)⋮̸5\). Điều này có nghĩa là \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\). Tóm lại, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\).

2) Ta so sánh \(a^3-7a^2+4a-14\) với \(a^3+3\). Ta thấy \(\left(a^3-7a^2+4a-14\right)-\left(a^3+3\right)\) \(=-7a^2+4a-17=D\). dễ thấy với mọi \(a\inℤ\) thì \(D< 0\) (thực ra với mọi \(a\inℝ\) thì vẫn có \(D< 0\)) nên \(a^3-7a^2+4a-14< a^3+3\), vì vậy \(a^3-7a^2+4a-14⋮̸a^3+3\). Vậy, không tồn tại \(a\inℤ\) thỏa mãn ycbt.

Mình làm 2 bài này trước nhé.

Bình luận (0)
NH
20 tháng 6 2023 lúc 21:42

P = 12 + 22 + 32 +...+n2 không chia hết cho 5

P = 1.(2-1) + 2.(3-1) + 3.(4-1)+...+n(n +1 - 1)

P = 1.2-1+ 2.3 - 2+ 3.4 - 3+...+ n(n+1) - n

P = 1.2 + 2.3 + 3.4+ ...+n(n+1) - (1+2+3+...+n)

P = n(n+1)(n+2):3 - (n+1)n:2

P = n(n+1){ \(\dfrac{n+2}{3}\) - \(\dfrac{1}{2}\)}

P = n(n+1)(\(\dfrac{2n+1}{6}\)) không chia hết cho 5 

⇒ n(n+1)(2n+1) không chia hết cho 5

⇒ n không chia hết cho 5

⇒ n = 5k + 1; n = 5k + 2; n = 5k + 3; n = 5k + 4

th1: n = 5k + 1 ⇒ n + 1 = 5k + 2 không chia hết cho 5  ; 2n + 1 = 10n + 3 không chia hết cho 5 vậy n = 5k + 1 (thỏa mãn)

th2: nếu n = 5k + 2 ⇒ n + 1 = 5k + 3 không chia hết cho 5;    2n + 1  = 10k + 5 ⋮ 5 (loại)

th3: nếu n = 5k + 3 ⇒  n + 1 = 5k +4 không chia hết cho 5;   2n + 1 = 10k + 7 không chia hết cho 5 (thỏa mãn)

th4 nếu n = 5k + 4 ⇒ n + 1 = 5k + 5 ⋮ 5 (loại)

Từ những lập luận trên ta có:

P không chia hết cho 5 khi 

\(\left[{}\begin{matrix}n=5k+1\\n=5k+3\end{matrix}\right.\) (n \(\in\) N)

 

 

 

Bình luận (0)
LP
20 tháng 6 2023 lúc 21:44

3) Ta có \(P\left(n\right)=n^{1800}\left(n^{80}+n^{40}+1\right)\). Đặt \(n^{10}=a\) với \(a\inℕ\), khi đó \(P\left(a\right)=a^{180}\left(a^8+a^4+1\right)\) còn \(Q\left(a\right)=a^2+a+1\). Ta sẽ chứng minh \(a^8+a^4+1⋮a^2+a+1,\forall a\inℕ\). Thật vậy, xét hiệu:

\(D=\left(a^8+a^4+1\right)-\left(a^2+a+1\right)=a^8+a^4-a^2-a\). Phân tích D thành nhân tử, ta được:

\(D=a\left(a-1\right)\left(a^2+a+1\right)\left(a^4+a+1\right)\)\(⋮a^2+a+1\)

Từ đây suy ra được \(a^8+a^4+1⋮a^2+a+1,\forall a\inℤ\). Vậy ta có đpcm

Bình luận (0)
NT
Xem chi tiết
AC
8 tháng 11 2015 lúc 16:20

tich minh noi cho

 

Bình luận (0)
GT
25 tháng 2 2016 lúc 10:58

k rồi đó sao không nói

Bình luận (0)
TH
Xem chi tiết
DT
Xem chi tiết
NT
15 tháng 12 2016 lúc 12:58

làm câu

Bình luận (0)
DV
Xem chi tiết
NN
1 tháng 12 2017 lúc 21:06

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!

Bình luận (0)
DV
Xem chi tiết
H6
Xem chi tiết
NT
3 tháng 2 2021 lúc 18:39

1) Ta có: \(2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

2) Ta có: \(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

mà \(n-3⋮n-3\)

nên \(5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

Vậy: \(n\in\left\{4;2;8;-2\right\}\)

Bình luận (1)
HA
31 tháng 10 2024 lúc 16:59

ko biết

Bình luận (0)
LM
Xem chi tiết
H24
13 tháng 7 2018 lúc 15:49

Bài 2  : 

a)    C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )

<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1

<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1 

Đặt t = n2 + 5n + 5

Suy ra : C = ( t - 1 ).( t + 1 ) + 1

         => C = t2 - 1 + 1

       <=> C = t2    hay C = ( n2 + 5n + 5 )2

Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương 

                                                                             ( đpcm )

b)     E = n2 + ( n + 1 )2 + n( n + 1 )2

 <=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2

 <=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2

 <=> E = [ n( n + 1 ) + 1 ]2

 <=> E = ( n2 + n + 1 )2

Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương

                                                                        ( đpcm )

Bình luận (0)
CN
Xem chi tiết
NT
Xem chi tiết