Những câu hỏi liên quan
H24
Xem chi tiết
NT
5 tháng 5 2021 lúc 23:18

a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔAEH\(\sim\)ΔBDH(g-g)

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 4 2017 lúc 12:17

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 2 2023 lúc 15:17

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2

Bình luận (0)
NN
Xem chi tiết
NT
23 tháng 4 2024 lúc 15:35

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔFHB\(\sim\)ΔEHC

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BE\cdot BH\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CF\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)

Bình luận (0)
CN
Xem chi tiết
CN
16 tháng 4 2023 lúc 15:18

Giúp với

 

Bình luận (0)
NT
16 tháng 4 2023 lúc 15:25

a: Xét ΔAEBvuông tại E và ΔAFC vuông tại F co

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

Bình luận (0)
DA
Xem chi tiết
NT
6 tháng 3 2022 lúc 23:20

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

Bình luận (0)
NA
Xem chi tiết
LM
Xem chi tiết
KK
Xem chi tiết