Bài 7: Trường hợp đồng dạng thứ ba

H24

cho tam giác nhọn ABC có các đường cao AD, BE và CF đồng quy tại H. Chứng minh:

a, tam giác AEF đồng dạng với tam giác ABC

b, H là giao điểm các đường phân giác của tam giác DEF

c, BH.BE + CH.CF = BC2

NT
25 tháng 2 2023 lúc 15:17

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TD
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
CA
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
VL
Xem chi tiết
SK
Xem chi tiết