PT
Xem chi tiết
NV
2 tháng 1 2017 lúc 21:30

Bài này bạn không nên dùng phương pháp giải tích, dùng hình học cho dễ!

A M1 M2 O M'

Đường thẳng AO cắt mặt cầu (S) tại 2 điểm M1 và M2

Xét một đường tròn (C)= (O;R=3) bất kỳ thuộc (S) và điểm M di động trên (C) và không trùng M1, M2

Không mất tính tổng quát, điểm M có thể đại diện cho mọi điểm trên (S) (trừ M1, M2)

+) Dễ thấy \(\widehat{M_2MM_1}=90^0\),

tia M'M1 nằm giữa tia M'A và M'M2 nên \(\widehat{M_2MA}>\widehat{M_2MM_1}=90^0\)

\(\Rightarrow\widehat{M_2MA}\) là góc tù

\(\Rightarrow\Delta M_2MA\)luôn có cạnh \(AM_2>AM\)

Vậy MA max khi và chỉ khi \(M\equiv M_2\)

tìm điểm M2 bằng cách \(\frac{\overrightarrow{AM_2}}{\overrightarrow{AO}}=\frac{AM_2}{AO}=\frac{8}{5}\Rightarrow M_2\left(\frac{24}{5};\frac{17}{5};\frac{14}{5}\right)\)

+) Dễ thấy \(\widehat{AM_1M}\) là góc tù nên \(\Delta AM_1M\) luôn có \(AM>AM_1\)

Vậy MA min khi và chỉ khi \(M\equiv M_1\)

.......(làm tương tự ý trên để tìm M1 :3 )

Bình luận (1)
NH
13 tháng 1 2017 lúc 18:08

Cho mình hỏi sao đề bài không cho tọa độ điểm B hoặc điểm B nằm ở đâu à hum mình cảm thấy hơi vô lý nhonhung

Bình luận (1)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 0:59

Ta có: \(3\left( {\overrightarrow {AB}  + 2\overrightarrow {BC} } \right) - 2\left( {\overrightarrow {AB}  + 3\overrightarrow {BC} } \right)\)\( = 3\overrightarrow {AB}  + 3.\left( {2\overrightarrow {BC} } \right) - \left[ {2\overrightarrow {AB}  + 2.\left( {3\overrightarrow {BC} } \right)} \right]\)

\[ = 3\overrightarrow {AB}  + 6.\overrightarrow {BC}  - \left( {2\overrightarrow {AB}  + 6.\overrightarrow {BC} } \right)\]\[ = 3\overrightarrow {AB}  + 6.\overrightarrow {BC}  - 2\overrightarrow {AB}  - 6.\overrightarrow {BC} \]

\[ = \left( {3\overrightarrow {AB}  - 2\overrightarrow {AB} } \right) + \left( {6.\overrightarrow {BC}  - 6.\overrightarrow {BC} } \right) = \overrightarrow {AB} .\]

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 11:27

a) Thay \(x =  - 3\) vào hàm số ta được:

\(y = {\left( { - 3} \right)^2} + 2.\left( { - 3} \right) - 3 = 0\). Điền 0 vào ô tương ứng.

Thay \(x =  - 2\) vào hàm số ta được:

\(y = {\left( { - 2} \right)^2} + 2.\left( { - 2} \right) - 3 =  - 3\). Điền \( - 3\) vào ô tương ứng.

Thay \(x =  - 1\) vào hàm số ta được:

\(y = {\left( { - 1} \right)^2} + 2.\left( { - 1} \right) - 3 =  - 4\). Điền \( - 4\) vào ô tương ứng.

Thay \(x = 0\) vào hàm số ta được:

\(y =  - 3\). Điền \( - 3\) vào ô tương ứng.

Thay \(x = 1\) vào hàm số ta được:

\(y = {\left( 1 \right)^2} + 2.\left( 1 \right) - 3 = 0\). Điền 0 vào ô tương ứng.

Vậy ta có:

b) Các điểm có trong hình 11.

c) Đường cong đi qua 5 điểm là parabol trong hình 11.

d) Từ đồ thị ta thấy điểm thấp nhất là điểm C(-4;-1)

Phương trình trục đối xứng là x=-1

Đồ thị có bề lõm lên trên.

Bình luận (0)
SK
Xem chi tiết
BV
17 tháng 5 2017 lúc 17:13

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

Bình luận (0)
H24
Xem chi tiết
NL
24 tháng 12 2020 lúc 13:00

1.

Đặt \(P=\left|\overrightarrow{AD}+3\overrightarrow{AB}\right|\Rightarrow P^2=AD^2+9AB^2+6\overrightarrow{AD}.\overrightarrow{AB}\)

\(=AD^2+9AB^2=10AB^2=10a^2\)

\(\Rightarrow P=a\sqrt{10}\)

2.

Tam giác ABC đều nên AM là trung tuyến đồng thời là đường cao \(\Rightarrow AM\perp BM\)

\(AM=\dfrac{a\sqrt{3}}{2}\) ; \(BM=\dfrac{a}{2}\)

\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)

\(\Rightarrow T^2=MA^2+4MB^2+4\overrightarrow{MA}.\overrightarrow{MB}=MA^2+4MB^2\)

\(=\left(\dfrac{a\sqrt{3}}{2}\right)^2+4\left(\dfrac{a}{2}\right)^2=\dfrac{7a^2}{4}\Rightarrow T=\dfrac{a\sqrt{7}}{2}\)

3.

\(T=\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{AB}\right|\)

\(=\left|\dfrac{4}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\right|\Rightarrow T^2=\dfrac{16}{9}AB^2+\dfrac{4}{9}AC^2-\dfrac{16}{9}\overrightarrow{AB}.\overrightarrow{AC}\)

\(=\dfrac{20}{9}AB^2-\dfrac{16}{9}AB^2.cos60^0=\dfrac{20}{9}a^2-\dfrac{16}{9}a^2.\dfrac{1}{2}=\dfrac{4}{3}a^2\)

\(\Rightarrow T=\dfrac{2a}{\sqrt{3}}\)

Bình luận (0)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:52

Ta có: \(\overrightarrow {AB}  = (1;7),\overrightarrow {AD}  = ( - 7;1),\overrightarrow {CD}  = ( - 1; - 7)\),\(\overrightarrow {BC}  = ( - 7;1)\)

Suy ra \(AB = \overrightarrow {AB}  = \sqrt {{1^2} + {7^2}}  = 5\sqrt 2 ,AD = \overrightarrow {AD}  = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}}  = 5\sqrt 2 ,\)

          \(CD = \overrightarrow {CD}  = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}}  = 5\sqrt 2 \),\(BC = \overrightarrow {BC}  = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 1} \right)}^2}}  = 5\sqrt 2 \)

\( \Rightarrow AB = BC = CD = DA = 5\sqrt 2 \) (1)

Mặt khác ta có

\(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AD} }}{{AB.AD}} = \frac{{1.( - 7) + 7.1}}{{5\sqrt 2 .5\sqrt 2 }} = 0 \Rightarrow \widehat A = 90^\circ \) (2)

Từ (1) và(2) suy ra ABCD là hình vuông (đpcm)

Bình luận (0)
H24
Xem chi tiết
Xem chi tiết
BV
Xem chi tiết
H24
26 tháng 2 2018 lúc 14:47

Theo hệ trục toạ độ ( bạn tự vẽ nha ), để ABCD là hình vuông => \(A\left(-2;-2\right)\)

Ta có : độ dài AB=\(\sqrt{\left(-2+2\right)^2+\left(-2-3\right)^2}=\sqrt{25}=5\)

=> Diện tích của hình v ABCD=\(5^2=25\)( đơn vị )

Bình luận (0)
BV
26 tháng 2 2018 lúc 19:17

Thanks

Bình luận (0)
PA
Xem chi tiết
HT
6 tháng 11 2016 lúc 21:38

cái này của lớp 10 mk @@

Bình luận (0)
PA
6 tháng 11 2016 lúc 21:58

uk ./..lớp 10 mà 

Bình luận (0)