chứng minh rằng cos^4a - sin^4a+1=2cos^2a
chứng minh rằng sin^4a-cos^4a+2cos^2a=1
chứng minh rằng sin^4a-cos^4a+2cos^2a=1
chứng minh rằng sin^4a-cos^4a+2cos^2a=1 giúp mình với
Chứng minh rằng
a, \(tg^2a+1=\frac{1}{cos^2a}\)
b, \(cotg^2a+1=\frac{1}{sin^2a}\)
c, \(cos^4a-sin^4a=2cos^2a-1\)
a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)
b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)
c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)
Chứng minh (sin^2a-cos^2a+cos^4a) : (cos^2a-sin^2a+sin^4a) = tan^4a
Tinh cac gia tri bieu thuc sau:
A= (cota+tana)/(cota-tana) voi sina=3/5
B= (sin^2a-cos^2a)/(sin^2a-3cos^2a) voi cota=-1/3
C1=sin^2a+2cos^2a va C2= sin^4a-cos^4a voi tana=-2
Ai giup minh voii. Minh cam on nhieuu!
\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)
\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)
\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)
\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)
\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)
\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)
Chứng minh: Cos 5a - 2Cos a(Cos 4a - Cos 2a)= Cos a
Tính \(sin^4a\left(3-2sin^2a\right)+cos^4a\left(3-2cos^2a\right)\)
tôi có lớp 6 thôi ạ cái này lớp 9 thì bó tay thôi
chị đã ghi rõ là toán lớp 9 mà em ko biết làm cũng phải thôi :))
\(A=2\cos^4a-\sin^4a+\sin^2a.\cos^2a+3\sin^2a\)
Chứng minh các biểu thức sau ko phụ thuộc anpha(MỌI NGƯỜI CHỨNG MINH HỘ MÌNH VỚI)
\(A=2\cos^4\alpha-\sin^4\alpha+\sin^2\alpha.\cos^2\alpha+3\sin^4\alpha+3\cos^2\alpha.\sin^2\alpha\)
\(A=2\sin^4\alpha+2\cos^4\alpha+4\sin^2\alpha.\cos^2\alpha\)
\(A=2\left[\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha\right]+4\cos^2\alpha\sin^2\alpha=2\)
A = 2(1 - sin2α)2 - sin4α + sin2α (1-sin2α) + 3sin2α
=2 - 4sin2α + 2sin4α - sin4α + sin2α - sin4α + 3sin2α
= 2