Cho hình thoi ABCD có \(\widehat{BAD}=30^o,AB=6.2cm\). Tính diện tích hình thoi.
cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi. AB=8cm, \(\widehat{BAD}=\widehat{ACA'=60}\) BAD= góc ACA'=60 độ. tính diện tích xung quanh và diện tích toàn phần của hình lăng trụ
Cho hình thoi ABCD có hai đường chéo cắt nhau tại O. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. Nối ED cắt AC ở I và BC ở F.
c) Biết ∠BAD = 60o, AB = a. Tính diện tích hình thoi ABCD theo a.
c) ΔABD cân (AB = AD (gt)) có ∠BAD = 60o nên ΔABD đều
kẻ BJ ⊥ AD ta có:
Hình thoi ABCD có góc A =30* , AB = 4cm. Tính diện tích hình thoi
A = 30
=> h = AB/2 =4/2 =2
S = ah = AB . AB/2 = 4.2 =8 cm2
Cho \(SA\perp\left(ABCD\right)\) ,\(ABCD\) là hình thoi cạnh \(a\),\(SA=a\sqrt[]{2}\) ,\(\widehat{BAD}=60^o\) . Tính \(\widehat{(SAD),(SCD)}\).
Cho hình hộp đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a. \(\widehat{BAD}=120^0;\widehat{BA'D}=90^0\). Tính thể tích hình hộp theo a ?
Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi, cạnh a; \(\widehat{BAD}=60^0\). Biết \(AB'\perp BD'\). Tính thể tích khối lăng trụ \(\left(V=S_đ.h\right)\)
Đặt \(x=AA'\)
Ta có: \(\overrightarrow{AB'}=\overrightarrow{AA'}+\overrightarrow{AB}\) ; \(\overrightarrow{BD'}=\overrightarrow{BB'}+\overrightarrow{BD}=\overrightarrow{BB'}+\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{AB'}.\overrightarrow{BD'}=\left(\overrightarrow{AA'}+\overrightarrow{AB}\right)\left(\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\right)\)
\(=AA'^2+\overrightarrow{AA'}\left(-\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{AB}.\overrightarrow{AA'}-AB^2+\overrightarrow{AB}.\overrightarrow{BC}\)
\(=x^2-a^2+AB.BC.cos120^0\)
\(=x^2-a^2-\dfrac{a^2}{2}=x^2-\dfrac{3a^2}{2}=0\)
\(\Rightarrow x=\dfrac{a\sqrt{6}}{2}\)
\(V=\dfrac{a\sqrt{6}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{2}}{4}\)
Cho hình hôp đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và góc BAD=60.Biết AB' hợp với mặt đáy(ABCD) 1 góc 30.Tính thể tích khối hộp
\(\Delta ABD\) đều cạnh a.
\(\Rightarrow S_{ABD}=\frac{a^2\sqrt{3}}{4}\Rightarrow S_{ABCD}=2S_{ABD}=\frac{a^2\sqrt{3}}{2}\)
\(\Delta ABB'\)vuông tại B \(\Rightarrow BB'=AB\tan30^o=a\sqrt{3}V=B.h=S_{ABCD}.BB'=\frac{3a^3}{2}\)
Cho hình Chóp S.ABC có mặt bên SBC là tam giác đều cạnh a , cạnh bên SA vuông góc với đáy . Biết góc BAC = 120 độ . Tính thể tích khối Chóp
Cho hình thoi ABCD có AB = 13cm, AC = 10cm. Tính diện tích của hình thoi
Gọi H là giao điểm của hai đường chéo AC,BD.
⇒ HA = HC = 5( cm )
Áp dụng định lí Py – to – go ta có:
Cho hình thoi ABCD có AB = 6cm, A ^ = 60 0 . Tính diện tích của hình thoi?
Diện tích của hình thoi ABCD là
S = 1/2AC.BD
Gọi O là giao điểm của AC và BD
⇒ S = 2OA.OB
Từ giả thiết ta có hình thoi ABCD có A ^ = 60 0 nên Δ ABD đều
Do đó Δ ABO là nửa tam giác đều có BO = 1/2BD = 6/2 = 3( cm ).
Áo dụng định lí Py – to – go ta có: