\(tìm các số nguyên x,y,z thõa mãn căn x+căn y-1+căn z-2=(x+y+z)/2\)
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Tìm x,y,z thỏa mãn: x+y+z+8=2×căn(x+1)+4×căn(y-2)+6×căn(z-3)
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
Cho các số nguyên x,y,z khác không, thỏa mãn x+y+z=0.
Chứng minh rằng căn (1/ x^2 + 1/y^2 + 1/z^2) là số hữu tỉ
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
Cho x,y,z thuộc R thỏa mãn |x|,|y|,|z|>0. Chứng minh căn(1-x^2)+căn(1-y^2)+căn(1-z^2)=<căn(9-(x+y+z)^2)
1)Cho x;y;z>0 và x+y+z=6
Tìm max: D= ( x-1) / x + ( y-1) / y + ( z-1) / z
2)Tìm các số nguyên n thỏa mãn n^2 + 2-14 là SCP
3)GPT: x^2 - 13 x + 50 = 4 căn(x-3)
giup mik với :
tìm các cặp số nguyên x,y,z thõa mãn :
xy - 2x y-1 -6y x-2 + 7 = 0
y-1 là căn y -1 nha
x-2 là căn x - 2 nha ^^