Tính tổng
S = 1+2+5+14+........+3^ n-1+1 / 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho S1 = 1+(-3)+5 + (-7) +...+17
S2 = -2 + 4 + (-6)+....+(-18)
Tính tổngS1 +S2
Ta có : S1 = 1 + (-3) + 5 + (-7) + .... + 17
= (1 - 3) + (5 - 7) + (9 - 11)+ (13 - 15) + 17
= -2 + -2 + -2 + -2 + 17
= -2 x 4 + 17
= -8 + 17
S1 = 9
S2 = (4 - 2) + (8 - 6) + (12 - 10) + (16 - 14) + -18
= 2 x 4 - 18
S2 = -10
S1 + S2 = 9 - 10 = -1
S1=1+(-3)+5+(-7)+...+17.
S1=-2+(-2)+....+(-2).(9 số -2).
S2=-2+4+(-6)+....+(-18)
S2=-2+(-2)+...+(-2).(9 số -2).
=> (-2).(9+9)=-36.
S1 = 1 + (-3) + 5 + (-7) + ............+ 17
= [ 1+(-3) ] + [5+(-7) + .........+ 17
= -2 + ( -2 ) + ......+ 17 ( có 4 số -2)
= -2 . 4 + 17
= -8 + 17 = 9
S2 = -2 + 4 + (-6) +8 ....+(-18)
= [ (-2)+4] + [ (-6) + 8 + ......+ (-18) (có 4 cặp số )
= 2 + 2 + .....+ (-18)
= 2 . 4 + (-18)
= 8 + (-18)
= -10
suy ra S1 + S2 = 9 + (-10) = -1
Tính tổngS=3+3/2+3/2^2+...+3/2^9
Cho tổng S=1+3+3^2+3^3+3^4+...+3^2016.
CMR TổngS chia hết cho 13
\(S=1+3+3^2+3^3+3^4+.....+3^{16}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+......+3^{2014}\left(1+3+3^2\right)\)
\(=1.13+3^3.13+.....+3^{2014}.13\)
\(=13\left(1+3^3+....+3^{2014}\right)⋮13\)
\(\Rightarrow S⋮13\)
cho sồ nguyên dương N là bình phương của một số nguyên. Tính tổng
s=1+4+9+16+25+...+N
ngôn ngữ c++
đầu vào #include<bits/stdc++.h>
#include<bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int sum = 0;
for (int i = 1; i <= N; i++) {
if (sqrt(i) == (int)sqrt(i)) {
sum += i;
}
}
cout << sum << endl;
return 0;
}
Tính tổng: 1+2+5+14+.......+3n-1+1/2
Tính tổng S=1+2+5+14+...+(3n-1 +1)/2
Tính tổng S = 1 + 2 + 5 + 14 + ... + 3n-1 + 1 / 2 ( n khác 0 )
S = (30/2 + 1/2) + (31/2 + 1/2) + (32/2 + 1/2) + (33/2 + 1/2) +..+ 3n-1/2 + 1/2
S = n.(1/2) + (1/2)[3^0 + 3^1 + 32 +...+ 3n-1]
S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4
S = (30/2 + 1/2) + (31/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3(n-1)/2 + 1/2
S = n.(1/2) + (1/2)[30 + 31 + 3² +...+ 3(n-1)]
S = n/2 + (3n - 1)/4 = (3n + 2n - 1)/4
tính tổng
S=\(\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)
giúp nha
\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)
\(=\dfrac{4}{9}-\dfrac{1}{5}\)
\(=\dfrac{11}{45}\)
Tính tổng: S= 1+2+5+14+... + (3n-1+1)/2