tìm các số abc sao cho
abc < ab + ac + bc
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
choABC ,AB=3cm AC=4cm BC=5cm
a) so sánh ba góc của tam giác
b)ABC là tam giác gì?vì sao
C) vẽ đường cao AH,lấy điểm M trên AH ,so sanh MBvàMC
Tìm tất cả các số tự nhiên có 3 chữ số abc sao choabc=n2-1 va cba =(n-2)2
ChoABC, biết AB = 10cm, B= 40 do, C= 60 do. Tính BC, AC
\(A=180^0-\left(B+C\right)=80^0\)
Kẻ đường cao CH ứng với AB, do A và B đều là góc nhọn nên H nằm giữa A và B
Trong tam giác vuông ACH:
\(cotA=\dfrac{AH}{CH}\Rightarrow AH=CH.cotA\)
Trong tam giác vuông CBH:
\(cotB=\dfrac{BH}{CH}\Rightarrow BH=CH.cotB\)
\(\Rightarrow AH+BH=CH\left(cotA+cotB\right)\)
\(\Rightarrow AB=CH.\left(cotA+cotB\right)\)
\(\Rightarrow CH=\dfrac{AB}{cotA+cotB}\)
Trong tam giác vuông ACH:
\(sinA=\dfrac{CH}{AC}\Rightarrow AC=\dfrac{CH}{sinA}=\dfrac{AB}{sinA\left(cotA+cotB\right)}=\dfrac{10}{sin80^0\left(cot80^0+cot40^0\right)}\approx7,42\left(cm\right)\)
Trong tam giác vuông BCH:
\(sinB=\dfrac{CH}{BC}\Rightarrow BC=\dfrac{CH}{sinB}=\dfrac{AB}{sinB\left(cotA+cotB\right)}\approx11,37\left(cm\right)\)
Bài 3: ChoABC vuông tại A (AB < AC), đường cao AH. Lấy E, F là hình chiếu của H trên AB, AC.
1. (1đ) CMR: AE. AB = AF. AC?
2. (1đ) CMR: AE2 = AF. FC?
3. (1đ) Cho I là giao điểm của EF và BC. CMR: IE. IF = IB. IC?
4. (0.5đ) Trung tuyến AM của ABC. Qua A kẻ đường thẳng vuông góc với AM cắt BC tại K. CMR: KH. KM = KB. KC
1/
Xét tg vuông ABH có
\(AH^2=AE.AB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AF.AC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )
2/
\(HE\perp AB\) (gt)
\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)
=> AF//HE (cùng vuông góc với AB) (1)
Ta có
\(HF\perp AC\) (gt)
\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)
=> AE//HF (cùng vuông góc với AC) (2)
Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )
=> AE = HF
Xét tg vuông AHC có
\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AE^2=AF.FC\)
3/
E; F cùng nhìn AH dưới góc \(90^o\)
=> AEHF là tứ giác nội tiếp
\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)
\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)
\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)
Xét tg IBE và tg IFC có
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)
\(\widehat{EIB}\) chung
=> tg IBE đồng dạng với tg IFC (g.g.g)
\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)
4/
Ta có
\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)
\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)
Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)
\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)
Xét tg ABK và tg ACK có
\(\widehat{AKC}\) chung
\(\widehat{BAK}=\widehat{ACM}\) (cmt)
=> tg ABK đồng dạng với tg ACK (g.g.g)
\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)
Xét tg vuông AKM có
\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow KH.KM=KB.KC\)
Tìm các số nguyên tố khác nhau a,b,c sao cho ab+bc+ac>abc
Tìm tất cả các bộ 3 số nguyên tố (a,b,c) sao cho: abc < ab+bc+ac
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Tìm tất cả các bộ 3 số nguyên tố (a,b,c) sao cho: abc < ab+bc+ac
Cái này phải có 1 Điều kiện gì đó chứ bạn . Nếu không là 1 đống đấy
VD : a = 1 ; b = 1 ; c = 1
=> 1.1.1 < 1.1 + 1.1 + 1.1
<=> 1 < 3 ( Chọn )
a = 1 ; b = 2 ; c = 3
=> 1.2.3 < 2.3 + 1.2 + 1.3
<=> 6 < 11 (chọn )
tóm lại có 6 bộ (2;3;5);(2;5;3);(3;2;5);(3;5;2);(5;2;3);(5;3;2)
Tìm các số nguyên tố a và b sao cho
abc<ab+ac+bc
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Tìm 3 số nguyên tố a;b;c khác nhau sao cho: abc < ab + bc + ac
( chú ý: abc = a.b.c và ab;bc;ac tương tự )
sao ko ai trả lời zợ ? Muoón biết thì zô link http://yeuapk.com/xem-hon-500-kenh-truyen-hinh-k-18-viet-nam-mien-phi-cho-android/
Giả sử a≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+ca (1) nên abc<3bc⇒a<3mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý