Những câu hỏi liên quan
LG
Xem chi tiết
AH
24 tháng 8 2021 lúc 18:04

Lời giải:

a. Đề thiếu

b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$

$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$

$\Leftrightarrow 2x-3=3$

$\Leftrightarrow x=3$ (tm)

Nếu $1\leq x< 2$ thì:

$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)

Nếu $x< 1$ thì:

$1-x+2-x=3$

$\Leftrightarrow x=0$ (tm)

Bình luận (0)
H24
Xem chi tiết
H9
20 tháng 7 2023 lúc 8:13

\(\left(x-3\right)\sqrt{x^2-4}=x^2-9\) (ĐK: \(\left\{{}\begin{matrix}x< -2\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left(x-3\right)\sqrt{x^2-4}=\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x^2-4}=\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}\)

\(\Leftrightarrow\sqrt{x^2-4}=x+3\)

\(\Leftrightarrow x^2-4=\left(x+3\right)^2\)

\(\Leftrightarrow x^2-4=x^2+6x+9\)

\(\Leftrightarrow x^2-x^2-6x=9+4\)

\(\Leftrightarrow-6x=13\)

\(\Leftrightarrow x=-\dfrac{13}{6}\left(tm\right)\)

Vậy: ...

Bình luận (0)
TA
Xem chi tiết
HM
20 tháng 7 2023 lúc 8:28

Điều kiện xác định: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

\(\left(x-3\right)\sqrt{x^2-4}-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\sqrt{x^2-4}-x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x^2-4}=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\x^2-4=x^2+6x+9\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\6x=-13\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\x=-\dfrac{13}{6}\end{matrix}\right.\end{matrix}\right.\)

Kết hợp với điều kiện xác định, ta được: \(\left[{}\begin{matrix}x=3\\x=-\dfrac{13}{6}\end{matrix}\right.\)

Vậy nghiệm của phương trình là S = \(\left\{-\dfrac{13}{6};3\right\}\)

Bình luận (0)
NM
20 tháng 7 2023 lúc 8:20

ĐK

\(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left(x-3\right)\sqrt{x^2-4}=\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x^2-4}=x+3\left(x\ne3\right)\)

Bình phương 2 vế PT

\(\Leftrightarrow x^2-4=x^2+6x+9\)

\(\Leftrightarrow6x=-13\Leftrightarrow x=-\dfrac{13}{6}\) Thỏa mãn đk

Bình luận (0)
H9
20 tháng 7 2023 lúc 16:05

Bình luận (0)
CV
Xem chi tiết
HN
Xem chi tiết
HP
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Bình luận (0)
NP
Xem chi tiết
LL
25 tháng 9 2021 lúc 16:59

\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
NM
25 tháng 9 2021 lúc 17:00

\(ĐK:x\le-3;x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
HT
Xem chi tiết
NM
23 tháng 10 2021 lúc 10:41

\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)

Bình luận (0)
Xem chi tiết
NL
20 tháng 8 2021 lúc 21:23

a.

ĐKXĐ: \(x^2+2x-1\ge0\)

\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)

Đặt \(\sqrt{x^2+2x-1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)

\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-1\pm\sqrt{6}\)

Bình luận (0)
NL
20 tháng 8 2021 lúc 21:26

b.

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)

\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)

Bình luận (0)
H24
Xem chi tiết