Những câu hỏi liên quan
TN
Xem chi tiết
NL
Xem chi tiết
H24
22 tháng 12 2021 lúc 22:03

\(\left\{{}\begin{matrix}2x+5y=10\\-2x-5y=-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\2x+5y-2x-5y=10-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\0=-2\left(vô.lí\right)\end{matrix}\right.\)

vậy hệ phương trình vô nghiệm

Bình luận (0)
NM
22 tháng 12 2021 lúc 22:26

Có \(\dfrac{2}{-2}=\dfrac{5}{-5}\ne\dfrac{10}{-12}\) nên hệ vô nghiệm (sách giáo khoa)

Bình luận (0)
DV
Xem chi tiết
NM
20 tháng 11 2021 lúc 8:31

\(\Leftrightarrow x\left(y+2\right)=-5\left(y+2\right)\\ \Leftrightarrow\left(x+5\right)\left(y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)

Bình luận (0)
KH
Xem chi tiết
NN
21 tháng 8 2017 lúc 18:18

đề = x-1>=0 \(\rightarrow\)x>=1

2x-3>=0\(\rightarrow\)x>=1,5

so sánh điều kiện S=(1;1,5)

ta thay đấu() = đấu ngoặc nhọn

Bình luận (0)
HD
Xem chi tiết
UT
1 tháng 8 2021 lúc 18:16

Th1

2x+3=x-4(x>=-3/2)

<=>x=-7(loại)

Th2

2x+3=4-x(x=<-3/2)

<=>3x=1

<=>x=1/3(loại)

Pt vô nghiệm

 

Bình luận (0)
MN
1 tháng 8 2021 lúc 18:18

\(\left|2x+3\right|=x-4\left(x\ge4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-4\\2x+3=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3-4\\3x=4-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(L\right)\\x=\dfrac{1}{3}\left(L\right)\end{matrix}\right.\)

Không có giá trị của x thỏa mãn.

Bình luận (0)
MB
Xem chi tiết
KH
8 tháng 7 2021 lúc 18:18

\(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\forall x\in R\)

Vậy BPT có tập nghiệm là \(R\)

Bình luận (0)
H24
Xem chi tiết
IK
12 tháng 5 2022 lúc 16:28

\(\Leftrightarrow-x+2x>9-5\)

\(\Leftrightarrow x>4\)

Bình luận (1)
H24
12 tháng 5 2022 lúc 16:29

`-x+5 > 9-2x`

`<=>-x+2x > 9-5`

`<=>x > 4`

Vậy `S={x|x > 4}`

Bình luận (1)
TC
12 tháng 5 2022 lúc 16:38

-x+5 > 9-2x

\(\Leftrightarrow-x+5-9+2x>0\)

\(\Leftrightarrow x-4>0\Leftrightarrow x>4\)

Bình luận (1)
TT
Xem chi tiết
H24
2 tháng 2 2021 lúc 22:06

Điều kiện: \(x\ge-1\)

PT \(\Rightarrow-2x-2\le x^2-2x-3\le2x+2\)

+) Xét \(x^2-2x-3\ge-2x-2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

+) Xét \(x^2-2x-3\le2x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

 \(\Rightarrow x\in(-\infty;-1]\cup[-5;+\infty)\)

Bình luận (0)
PN
Xem chi tiết
NL
29 tháng 6 2021 lúc 10:50

- Đặt \(f\left(x\right)=\dfrac{2x-3}{19+8x}\)

- Lập bảng xét dấu :

- Từ bảng xét dấu : - Để : \(f\left(x\right)< 0\)

\(\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)

Vậy ...

Bình luận (0)
NT
29 tháng 6 2021 lúc 11:34

Ta có: \(\dfrac{2x-3}{8x+19}< 0\)

Trường hợp 1: \(\left\{{}\begin{matrix}2x-3>0\\8x+19< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Trường hợp 2: \(\left\{{}\begin{matrix}2x-3< 0\\8x+19>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>-\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)

Vậy: S={x|\(-\dfrac{19}{8}< x< \dfrac{3}{2}\)}

Bình luận (0)