giải BPT 2x+5y > 10 ; x+3y < 6
Giải bpt: √x-1 + √3-x + 4x√2x ≥ x^3 +10
giải hệ phương trình sau bằng phương pháp cộng đại số
\(\left\{{}\begin{matrix}2x+5y=10\\-2x-5y=-12\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+5y=10\\-2x-5y=-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\2x+5y-2x-5y=10-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\0=-2\left(vô.lí\right)\end{matrix}\right.\)
vậy hệ phương trình vô nghiệm
Có \(\dfrac{2}{-2}=\dfrac{5}{-5}\ne\dfrac{10}{-12}\) nên hệ vô nghiệm (sách giáo khoa)
giải phương trình sau :
xy + 2x = - 5y - 10
\(\Leftrightarrow x\left(y+2\right)=-5\left(y+2\right)\\ \Leftrightarrow\left(x+5\right)\left(y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)
Giải BPT :
a. (x-1)(2x-3) lớn hơn hoặc bằng 0
b. x-7/10-x lớn hơn hoặc bằng 0
đề = x-1>=0 \(\rightarrow\)x>=1
2x-3>=0\(\rightarrow\)x>=1,5
so sánh điều kiện S=(1;1,5)
ta thay đấu() = đấu ngoặc nhọn
Giải BPT: |2x+3|=x-4
Th1
2x+3=x-4(x>=-3/2)
<=>x=-7(loại)
Th2
2x+3=4-x(x=<-3/2)
<=>3x=1
<=>x=1/3(loại)
Pt vô nghiệm
\(\left|2x+3\right|=x-4\left(x\ge4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-4\\2x+3=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3-4\\3x=4-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(L\right)\\x=\dfrac{1}{3}\left(L\right)\end{matrix}\right.\)
Không có giá trị của x thỏa mãn.
x2 +2x+4 >0 giải bpt
\(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\forall x\in R\)
Vậy BPT có tập nghiệm là \(R\)
Giải BPT sau
-x+5 > 9-2x
\(\Leftrightarrow-x+2x>9-5\)
\(\Leftrightarrow x>4\)
`-x+5 > 9-2x`
`<=>-x+2x > 9-5`
`<=>x > 4`
Vậy `S={x|x > 4}`
-x+5 > 9-2x
\(\Leftrightarrow-x+5-9+2x>0\)
\(\Leftrightarrow x-4>0\Leftrightarrow x>4\)
Giải bpt chứa dấu giá trị tuyệt đối
| x2 - 2x - 3 | ≤ 2x + 2
Điều kiện: \(x\ge-1\)
PT \(\Rightarrow-2x-2\le x^2-2x-3\le2x+2\)
+) Xét \(x^2-2x-3\ge-2x-2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
+) Xét \(x^2-2x-3\le2x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
\(\Rightarrow x\in(-\infty;-1]\cup[-5;+\infty)\)
giải bpt:
\(\dfrac{2x-3}{19+8x}\)<0
- Đặt \(f\left(x\right)=\dfrac{2x-3}{19+8x}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để : \(f\left(x\right)< 0\)
\(\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy ...
Ta có: \(\dfrac{2x-3}{8x+19}< 0\)
Trường hợp 1: \(\left\{{}\begin{matrix}2x-3>0\\8x+19< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Trường hợp 2: \(\left\{{}\begin{matrix}2x-3< 0\\8x+19>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>-\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy: S={x|\(-\dfrac{19}{8}< x< \dfrac{3}{2}\)}