Những câu hỏi liên quan
H24
Xem chi tiết
H24
5 tháng 5 2022 lúc 21:09

`[x-3]/5=[2x-6]/10`

`[2(x-3)]/10=[2x-6]/10`

`2x-6=2x-6`

`2x-2x=-6+6`

`0x=0` (LĐ)

Vậy `x in RR`

Bình luận (2)
H24
5 tháng 5 2022 lúc 21:11

undefined

CHÚC EM HỌC TỐT NHÉok

Bình luận (2)
HN
Xem chi tiết

a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\) 

b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\) 

     \(\dfrac{x}{3}=\dfrac{-14}{15}\) 

\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)

Bình luận (0)

\(x=\dfrac{-2}{7}+\dfrac{9}{7}\) 

\(x=1\)

Bình luận (0)
H24
21 tháng 5 2021 lúc 16:28

x=1

Bình luận (0)
H24
Xem chi tiết
NT
29 tháng 12 2021 lúc 14:42

c: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{1}{2}\\x-\dfrac{2}{5}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{10}\\x=-\dfrac{1}{10}\end{matrix}\right.\)

Bình luận (0)
AD
Xem chi tiết
TH
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Bình luận (0)
LM
Xem chi tiết
NM
14 tháng 12 2021 lúc 20:59

\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)

Bình luận (1)
H24
Xem chi tiết
KD
26 tháng 7 2021 lúc 15:24

đấy nhá

Bình luận (1)
NT
26 tháng 7 2021 lúc 23:39

b) Ta có: \(\left|x\right|-\dfrac{3}{4}=\dfrac{5}{3}\)

\(\Leftrightarrow\left|x\right|=\dfrac{5}{3}+\dfrac{3}{4}=\dfrac{20}{12}+\dfrac{9}{12}=\dfrac{29}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{12}\\x=-\dfrac{29}{12}\end{matrix}\right.\)

c) Ta có: \(\left|2x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)

\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{1}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{1}{6}\\2x-\dfrac{1}{3}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{6}+\dfrac{1}{3}=\dfrac{1}{2}\\2x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{1}{12}\end{matrix}\right.\)

Bình luận (0)
HN
Xem chi tiết
TH
28 tháng 7 2021 lúc 15:43

A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)

A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)

A = 4

Vậy A không phụ thuộc vào x

Chúc bn học tốt!

Bình luận (0)
NT
29 tháng 7 2021 lúc 0:43

Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)

\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)

\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)

\(=10\cdot\dfrac{2}{5}=4\)

Bình luận (0)
LL
Xem chi tiết
TL
16 tháng 4 2022 lúc 14:49

\(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)

\(=\left(\dfrac{1}{10}+\dfrac{9}{10}\right)+\left(\dfrac{2}{10}+\dfrac{8}{10}\right)+\left(\dfrac{3}{10}+\dfrac{7}{10}\right)+\left(\dfrac{4}{10}+\dfrac{6}{10}\right)+\dfrac{5}{10}\)

\(=1+1+1+1+\dfrac{5}{10}\)

\(=4+\dfrac{5}{10}\)

\(=\dfrac{45}{10}\)

\(13,25:0,5+13,25:0,25+13,25:0,125+13,25\times6\)

\(=13,25:\dfrac{1}{2}+13,25:\dfrac{1}{4}+13,25:\dfrac{1}{8}+13,25\times6\)

\(=13,25\times2+13,25\times4+13,25\times8+13,25\times6\)

\(=13,25\times\left(2+4+8+6\right)\)

\(=13,25\times20\)

\(=265\)

Bình luận (0)
CL
Xem chi tiết
VD
27 tháng 4 2023 lúc 23:01

=> 1/x = 5/6 - y/3

1/x = 5-2y/6

=> x(5-2y) = 1.6 = 6

Do x ∈ N => x >= 0

Mà 6>0 => 5-2y > 0

Vì y ∈ N => 5-2y ∈ N*

Ta có bảng:

x136
5-2y621
y-0,52,52

Do x,y ∈ N => (x,y) = (6,2) (thử lại thỏa mãn)

Vậy x=6; y = 2

Bình luận (0)