Những câu hỏi liên quan
NS
Xem chi tiết
NT
5 tháng 7 2020 lúc 21:26

a) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

Bình luận (0)
TP
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
HN
30 tháng 5 2016 lúc 20:16

\(A=\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)(DK : \(x\ge0;x\ne4\))

\(=\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{x-4+10-x}{\sqrt{x}+2}\)

\(=\frac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+2}{6}=\frac{1}{2-\sqrt{x}}\)

Để A > 0 thì \(2-\sqrt{x}>0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy để A < 0 thì x < 4

Bình luận (0)
CH
31 tháng 5 2016 lúc 9:22

Bảo Ngọc kết luận hơi sai một chút nhé. Để A > 0 thì x < 4 nhé :)

Bình luận (0)
HN
31 tháng 5 2016 lúc 21:33

Vâng ạ!

Bình luận (0)
Xem chi tiết
ND
2 tháng 10 2019 lúc 20:50

IQ vô cực thì tự làm đi

Bình luận (0)
H24

thay tên rồi chỉ

Bình luận (0)
AM
2 tháng 10 2019 lúc 20:53

IQ vô cực mà , bn tự làm đc cái biểu thức dễ ợt này mà

Bình luận (0)
KP
Xem chi tiết
PL
29 tháng 7 2019 lúc 21:02

\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(:\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\)\(\frac{x-1-x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2}\)

\(=\frac{\sqrt{x}+3}{2\sqrt{x}}\)

Bình luận (0)
TK
Xem chi tiết
PQ
24 tháng 11 2019 lúc 18:33

a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
6 tháng 12 2015 lúc 21:34

\(=\left(\frac{x+2-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right):\left(\frac{\left(\sqrt{x}-4\right)\left(x+1\right)-\sqrt{x}\left(1-x\right)}{1-x^2}\right)\)

\(=\left(\frac{x+2-x-\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{x\sqrt{x}+\sqrt{x}-4x-4-\sqrt{x}+x\sqrt{x}}{1-x^2}\right)\)

\(=\frac{2-\sqrt{x}}{\sqrt{x}+1}:\frac{2x\sqrt{x}-3x-4}{\left(1-x\right)\left(1+x\right)}\)

\(=\frac{2-\sqrt{x}}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(1+x\right)}{2x\sqrt{x}-3x-4}\)

\(=\frac{\left(2-\sqrt{x}\right)\left(\sqrt{x}+x\sqrt{x}-1+x\right)}{2x\sqrt{x}-3x-4}\)

\(=\frac{2\sqrt{x}+2x\sqrt{x}-2+2x-x-x^2+\sqrt{x}-x\sqrt{x}}{2x\sqrt{x}-3x-4}\)

tới đêy tự xử đi

Bình luận (0)