\(\dfrac{x-2}{x+2}-\dfrac{x+2}{x-2}=\dfrac{24}{4-x^2}\)
Tìm x biết: a) \(\dfrac{6}{-x}=\dfrac{x}{-24}\) b) \(x-\dfrac{7}{12}x+\dfrac{3}{8}x=\dfrac{5}{24}\)
c)\(\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{2}=1\dfrac{3}{4}\) d) \(\dfrac{x-3}{-2}=\dfrac{-8}{x-3}\)
e) \(\dfrac{9}{x}=\dfrac{-35}{105}\) f) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
a: =>6/x=x/24
=>x^2=144
=>x=12 hoặc x=-12
b: =>x(1-7/12+3/8)=5/24
=>x*19/24=5/24
=>x=5/24:19/24=5/19
c: =>(x-1/3)^2=1+3/4+1/2=9/4
=>x-1/3=3/2 hoặc x-1/3=-3/2
=>x=11/6 hoặc x=-7/6
d: =>(x-3)^2=16
=>x-3=4 hoặc x-3=-4
=>x=-1 hoặc x=7
e: =>9/x=-1/3
=>x=-27
f: =>x-1/2=0 hoặc -x/2-3=0
=>x=1/2 hoặc x=-6
Tìm x:
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)
c) \(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)
a, đk x khác 0
<=> x^2 = 16 <=> x = 4 ; x = -4 (tm)
b, <=> 36x +252 = -360 <=> x = -17
c. đk x khác -1
<=> (x+1)^2 = 16
TH1 : x + 1 = 4 <=> x = 3 (tm)
TH2 : x + 1 = -4 <=> x = -5 (tm)
d, đk x khác 1/2
<=> (2x-1)^2 = 81
TH1 : 2x - 1 = 9 <=> x = 5 (tm)
TH2 : 2x - 1 = -9 <=> x = -4 (tm)
a: \(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
b: =>x+7/15=-2/3
=>x+7=-10
hay x=-17
c: \(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow x+1\in\left\{4;-4\right\}\)
hay \(x\in\left\{3;-5\right\}\)
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)=>x2=4.4=16 =>x2=42
=>x=2 hay x=-2.
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)=>\(\dfrac{x+7}{15}=-\dfrac{2}{3}\)=>x+7=-\(\dfrac{2}{3}.15\)=-10 =>x=-17
c)\(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)=>(x+1)2=2.8=16=42
=>x+1=4 hay x+1=-4
=>x=3 hay x=-5.
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)=>\(\dfrac{2x-1}{9}=\dfrac{9}{2x-1}\)=>(2x-1)2=92
=>2x-1=9 hay 2x-1=-9
=>x=5 hay x=-4.
1) tính
a) \(\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
b) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)
\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{32}{1-x^{32}}\)
GIẢI CÁC PT SAU:
\(\dfrac{2x+1}{3x+2}=5\)
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
\(\dfrac{2x+3}{x-3}-\dfrac{4}{x+3}=\dfrac{24}{x^2-9}+2\)
Giai phương trình sau
3x - 2 ) ( x + 3 ) = 9x2 - 4
\(\dfrac{x-4}{x+2}\) - \(\dfrac{x+1}{x-2}\)\(\dfrac{24}{x2-4}\)
a,\(\left(3x-2\right)\left(x+3\right)=9x^2-4\\ \Leftrightarrow\left(3x-2\right)\left(x+3\right)-\left(3x-2\right)\left(3x+2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x+3-3x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(-2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b, ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{x-4}{x+2}-\dfrac{x+1}{x-2}=\dfrac{24}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{24}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow\dfrac{x^2-6x+8-x^2-3x-2-24}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow-9x-18=0\\ \Leftrightarrow x=-2\left(ktm\right)\)
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
tính:
\(2\dfrac{3}{13}\) x \(\dfrac{26}{58}\) x 4 x \(2\dfrac{15}{24}\) x \(\dfrac{8}{21}\)
\(=\dfrac{29}{13}\cdot\dfrac{13}{29}\cdot4\cdot\dfrac{21}{8}\cdot\dfrac{8}{21}=4\)
tính:
\(2\dfrac{3}{13}\) x \(\dfrac{26}{58}\) x 4 x \(2\dfrac{15}{24}\) x \(\dfrac{8}{21}\)
bài này mik ra \(\dfrac{39}{29}\) ko bt đúng ko :)
23) \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)
24) \(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
25) \(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
24:
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)
\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
\(\Leftrightarrow x+5=0\)
hay x=-5