Tính nhanh
A=\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{1}{107.111}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{107.111}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(\Rightarrow=\frac{1}{3}-\frac{1}{111}\)
\(=\frac{12}{37}\)
k nha
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}\)
\(=\frac{108}{333}=\frac{12}{37}\)
ten gia mao nobita
nobi k the gioi nhu the
do gia :v
tính tổng sau : \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
4x(\(\frac{1}{3.7}+...+\frac{1}{107.111}\) )
4(\(\frac{1}{3}-\frac{1}{7}+...+\frac{1}{107}-\frac{1}{111}\))
4(\(\frac{1}{3}-\frac{1}{111}\))
4.\(\frac{12}{37}\)
48/37
\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)
\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)
\(A=\) \(4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{107.111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{111}\right)\)
\(A=4.\frac{12}{37}\)
\(A=\frac{48}{37}\)
Tính hợp lí
A=\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{107.111}\)
4A=\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
4A=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
4A=\(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
A=\(\frac{12}{37}:4=\frac{12}{37}.\frac{1}{4}=\frac{3}{37}\)
\(4A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(4A=\frac{1}{3}-\frac{1}{111}\)
\(4A=\frac{36}{111}\)
\(A=\frac{36}{111}\div4\)
\(A=\frac{9}{111}\)
Tính nhanh:
\(C=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{40.41}+\frac{2}{41.42}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(E=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
Ta có:
\(C=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{40.41}+\frac{2}{41.42}\)
\(\Rightarrow C=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{40.41}+\frac{1}{41.42}\right)\)
\(\Rightarrow C=2\left(\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{41-40}{40.41}+\frac{42-41}{41.42}\right)\)
\(\Rightarrow C=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{40}-\frac{1}{41}+\frac{1}{41}-\frac{1}{42}\right)\)
\(\Rightarrow C=2.\left(\frac{1}{3}-\frac{1}{42}\right)=\frac{13}{21}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(\Rightarrow D=\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{111-107}{107.111}\)
\(\Rightarrow D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}=\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)\(E=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow E=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Rightarrow E=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}+\frac{11-10}{10.11}\)
\(\Rightarrow E=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
Tính giá trị biểu thức \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(A=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
tính tổng \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\)
\(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)
..........................
\(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)
=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)
=> =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)
Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)
\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{1023.1027}\)
\(=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{1027}\)
\(=\frac{1024}{3081}\)
ai k mik mik k lại nha
Tính giá trị của biểu thức: \(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
Vậy giá trị của biểu thức \(B=\frac{32}{99}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Ta Có
(1/3-1/7+1/7-1/11+1/11-1/15+...+1/95-1/99)
(1/3-1/99)
32/99
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)
\(=\frac{8}{27}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{7-3}{3.7}+\frac{11-7}{7.11}+.....+\frac{27-23}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)