Tìm x :( bài 14 trang 11 sách bồi dưỡng năng lực tự học toán 8)
Câu 2 : (2x+3)2+(x-1)*(x+1)=5*(x+2)2-(x-5)*(x+1)+(x+4)2
Câu 3 : (-x+5)*(x-2)+(x-7)*(x+7)=(3x+1)2-(C)*(3x+2)
Câu 4 : (5x-1)*(x+1)-2(x-3)2=(x+2)*(3x-1)-(x+4)2+(x2-x)
Câu 5 : (4x-1)2-(3x+2)*(3x-2)=(7x-1)*(x+2)+(2x+1)2-(3x+2)
Câu 6 : (2x+3)2-(5x-4)*(5x+4)=(x+5)2-(3x-1)*(7x+2)-(x2-1+1)
Câu 7 : (1-3x)2-(x-2)*(9x+1)=(3x-4)*(3x+4)-9(x+3)2
Câu 8 : (3x+4)*(3x-4)-(2x+5)=(x-5)+(2x+1)2-(x2-2x)+(x-1)2
Câu 9 : (x-7)*(x+1)-(x-3)2=(3x-5)*(3x+5)-(3x+1)+(x-2)2-x2
Câu 10 : -5(x+3)2+(x-1)*(x+1)+(2x-3)=(5x-2)2-5x(5x+3)
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
1) 2x – (3 – 5x) = 4( x +3)
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
3) 5x - 4(6-x)(x + 3) = (4-2x)(3-2x) + 2
4) (x - 1)3 - (3x + 2)(-12) = (x2 + 1)(x - 2) - x2
5) (3x -1)2 - (x +3)(2x-1) = 7(x + 1)(x -2) -3x
mn giúp mình vs
1) 2x – (3 – 5x) = 4( x +3)
<=>2x-3+5x=4x+12
<=>2x-3+5x-4x-12=0
<=>3x-15=0
<=>x=5
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
<=>10x-15-20x+28=19-2x-22
<=>10x-15-20x+28-19+2x+22=0
<=>-8x+16=0
<=>x=2
tham khảo
1) 2x – (3 – 5x) = 4( x +3)
<=>2x-3+5x=4x+12
<=>2x-3+5x-4x-12=0
<=>3x-15=0
<=>x=5
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
<=>10x-15-20x+28=19-2x-22
<=>10x-15-20x+28-19+2x+22=0
<=>-8x+16=0
<=>x=2
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
Bài 1 : Tìm x,y,z
1) 3x+2/5x+7 = 3x-1/5x+1
2) x+1/2x+1 = 0,5x+2/x+3
3) x/3=y/4:y/5 = z/7
4) x/3=y/4; y/3 = z/5 và 2x-3y+z=36
5) x-1/2 = y-2/3 = z-3/4 và 2x+3y-z= 50
6)2x+3/5x+2 = 4x+5/10x+2
CÁC BẠN BIẾT CÂU NÀO THÌ GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)