Thực hiện phép tính
\(d,\dfrac{x-1}{3-x}\)\(+\dfrac{x^2+x}{x^2-9}\)
Thực hiện phép tính
a) \(\dfrac{2x}{x^2-6x+9}\)+\(\dfrac{x-2}{x-3}\)
b)\(\dfrac{x^2+2}{x^3-1}\)+\(\dfrac{2}{x^2+x+1}\)-\(\dfrac{1}{x-1}\)
a) \(\dfrac{2x}{x^2-6x+9}+\dfrac{x-2}{x-3}\) (ĐK: \(x\ne3\))
\(=\dfrac{2x}{\left(x-3\right)^2}+\dfrac{x-2}{x-3}\)
\(=\dfrac{2x}{\left(x-3\right)^2}+\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{2x+x^2-2x-3x+6}{\left(x-3\right)^2}\)
\(=\dfrac{x^2-3x+6}{x^2-6x+9}\)
b) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)
Thực hiện các phép tính sau:
a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\) b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\) c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\)
\(a,\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\\ =\dfrac{\left(x-3\right)\left(x+3\right)}{x-2}\times\dfrac{x}{x-3}\\ =\dfrac{x\left(x+3\right)}{\left(x-2\right)}\)
\(b,\dfrac{x}{z^2}.\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\\ =\dfrac{x}{z^2}.\dfrac{xz}{y^3}.\dfrac{yz}{x^3}=\dfrac{x^2yz^2}{z^2y^3x^3}=\dfrac{1}{xy^2}\)
\(c,\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}.\dfrac{x^2}{2}\\ =\dfrac{2}{x}-\dfrac{2}{x}\times\dfrac{x}{1}+\dfrac{4x^2}{2x}\\ =\dfrac{2}{x}-\dfrac{2}{1}+2x\\ =\dfrac{2-2x+2x^2}{x}\)
a) \(\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\)
\(=\dfrac{\left(x+3\right)\left(x-3\right)}{x-2}\cdot\dfrac{x}{x-3}\)
\(=\dfrac{x\left(x+3\right)}{x-2}\)
b) \(\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\)
\(=\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}\cdot\dfrac{yz}{x^3}\)
\(=\dfrac{1}{xy^2}\)
c) \(\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)
\(=\dfrac{2}{x}-\dfrac{2}{x}\cdot x+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)
\(=\dfrac{2}{x}\cdot\left(1-x+2\right)\)
\(=\dfrac{2}{x}\cdot\left(3-x\right)\)
\(=\dfrac{6}{x}-2\)
Thực hiện phép tính, rút gọn:
a) (x - 2)(x + 4) - (x + 1)2
b) \(\dfrac{x+3}{x^2-3x}+\dfrac{3}{x^2+3x}+\dfrac{2x-18}{x^2-9}\)
a: \(=x^2+2x-8-x^2-2x-1=-9\)
b: \(=\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Thực hiện phép tính:
a) \(\dfrac{x^2}{x-1}+\dfrac{1-2x}{x-1}\)
b) \(\dfrac{x}{x-3}+\dfrac{-9}{x^2-3x}\)
c) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
d) \(\dfrac{5x+10}{4x-8}.\dfrac{x-2}{x+2}\)
e) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^2}\)
b) \(\dfrac{x}{x-3}\) + \(\dfrac{-9}{x^2-3x}\)
=\(\dfrac{x}{x-3}\)+ \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x.x}{x\left(x-3\right)}\) + \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x^2+3^2}{x\left(x-3\right)}\)
=\(\dfrac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}\)
=\(\dfrac{x+3}{x}\)
#Fiona
c) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
=\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{3^2-x^2}\) + \(\dfrac{x}{x+3}\)
=\(\dfrac{3}{x-3}\)+\(\dfrac{6x}{\left(x+3\right)\left(x-3\right)}\)+\(\dfrac{x}{x+3}\)
=\(\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)+\(\dfrac{6x}{\left(x+3\right)\left(x-3\right)}\)+\(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
=\(\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{9+6x+x^2}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{3^2+2.3x+x^2}{\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{\left(3-x\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{x-3}{x+3}\)
#Fiona
Tick đúng giúp mình nhaa<3
d)\(\dfrac{5x+10}{4x-8}\).\(\dfrac{x-2}{x+2}\)
=\(\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\) . \(\dfrac{x-2}{x+2}\)
=\(\dfrac{5\left(x+2\right).\left(x-2\right)\text{}\text{}}{4\left(x-2\right).\left(x+2\right)}\)
=\(\dfrac{5}{4}\)
#Fiona
Tick đúng giúp mikk nhaa
thực hiện phép tính
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\dfrac{15x-11}{x^2+2x-3}-\dfrac{3x-2}{x-1}-\dfrac{2x+3}{3+x}\)
\(\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(ĐKXĐ:x\ne1\)
\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)
\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)
\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)
\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)
\(\Rightarrow-4x^2-8x\)
⇒-4x(x-4)
thực hiện phép tính
\(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)
\(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)
\(\dfrac{6}{x-3}-\dfrac{2x-16}{x^2-9}-\dfrac{4}{x+3}\)
a) Ta có: \(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)
\(=\dfrac{x^2}{x\left(x-3\right)}-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}-\dfrac{9}{x\left(x-3\right)}\)
\(=\dfrac{x^2-6x+18-9}{x\left(x-3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
b) Ta có: \(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)
\(=\dfrac{7\left(x+6\right)-x^2+36}{x\left(x+6\right)}\)
\(=\dfrac{7x+42-x^2+36}{x\left(x+6\right)}\)
\(=\dfrac{-\left(x^2-7x-78\right)}{x\left(x+6\right)}\)
\(=\dfrac{-\left(x^2-13x+6x-78\right)}{x\left(x+6\right)}\)
\(=\dfrac{-\left[x\left(x-13\right)+6\left(x-13\right)\right]}{x\left(x+6\right)}\)
\(=\dfrac{13-x}{x}\)
c) Ta có: \(\dfrac{6}{x-3}-\dfrac{2x-6}{x^2-9}-\dfrac{4}{x+3}\)
\(=\dfrac{6\left(x+3\right)-2x+6-4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{6x+18-2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
Thực hiện các phép tính sau:
a) \(\dfrac{{8y}}{{3{x^2}}} \cdot \dfrac{{9{x^2}}}{{4{y^2}}}\)
b) \(\dfrac{{3x + {x^2}}}{{{x^2} + x + 1}} \cdot \dfrac{{3{x^3} - 3}}{{x + 3}}\)
c) \(\dfrac{{2{x^2} + 4}}{{x - 3}} \cdot \dfrac{{3x + 1}}{{x - 1}}:\dfrac{{{x^2} + 2}}{{6 - 2x}}\)
d) \(\dfrac{{2{x^2}}}{{3{y^3}}}:\left( { - \dfrac{{4{x^3}}}{{21{y^2}}}} \right)\)
e) \(\dfrac{{2x + 10}}{{{x^3} - 64}}:\dfrac{{{{\left( {x + 5} \right)}^2}}}{{2x - 8}}\)
f) \(\dfrac{1}{{x + y}}\left( {\dfrac{{x + y}}{{xy}} - x - y} \right) - \dfrac{1}{{{x^2}}}:\dfrac{y}{x}\)
\(a,\dfrac{8y}{3x^2}.\dfrac{9x^2}{4y^2}=\dfrac{72x^2y}{12x^2y^2}=\dfrac{6}{y}\\b,\dfrac{3x+x^2}{x^2+x+1}.\dfrac{3x^3-3}{x+3}=\dfrac{x\left(x+3\right)3\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x+3\right)}=3x\left(x-1\right)=3x^2-3x \)
\(c,\dfrac{2x^2+4}{x-3}.\dfrac{3x+1}{x-1}.\dfrac{6-2x}{x^2+2}=\dfrac{2\left(x^2+2\right)\left(3x+1\right)2\left(3-x\right)}{\left(x-3\right)\left(x-1\right)\left(x^2+2\right)}=\dfrac{-4\left(3x+1\right)}{x-1}=\dfrac{-12x-4}{x-1}\)
\(d,\dfrac{2x^2}{3y^3}:\left(-\dfrac{4x^3}{21y^2}\right)=\dfrac{-2x^2.21y^2}{3y^3.4x^3}=\dfrac{-42x^2y^2}{12x^3y^3}=\dfrac{-7}{2xy}\)
\(e,\dfrac{2x+10}{x^3-64}:\dfrac{\left(x+5\right)^2}{2x-8}=\dfrac{2\left(x+5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}.\dfrac{2\left(x-4\right)}{\left(x+5\right)^2}=\dfrac{4}{\left(x+5\right)\left(x^2+4x+16\right)}=\dfrac{4}{x^3+9x^2+16x+80}\)
\(f,\dfrac{1}{x+y}\left(\dfrac{x+y}{xy}-x-y\right)-\dfrac{1}{x^2}:\dfrac{y}{x}=\dfrac{1}{x+y}\left(\dfrac{\left(x+y\right)\left(1-xy\right)}{xy}\right)-\dfrac{x}{x^2y}=\dfrac{1-xy}{xy}-\dfrac{x}{x^2y}=\dfrac{-x^2y}{x^2y}=-1\)
Thực hiện các phép tính sau:
a) \(\dfrac{{2{x^2} - 1}}{{x - 2}} + \dfrac{{ - {x^2} - 3}}{{x - 2}}\)
b) \(\dfrac{x}{{x + y}} + \dfrac{y}{{x - y}}\)
c) \(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\)
d) \(\dfrac{{x + 2}}{{{x^2} + xy}} - \dfrac{{y - 2}}{{xy + {y^2}}}\)
e) \(\dfrac{1}{{2{x^2} - 3x}} - \dfrac{1}{{4{x^2} - 9}}\)
g) \(\dfrac{{2x}}{{9 - {x^2}}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\)
a: \(=\dfrac{2x^2-1-x^2-3}{x-2}=\dfrac{x^2-4}{x-2}=x+2\)
b: \(=\dfrac{x\left(x-y\right)+y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2-xy+xy+y^2}{x^2-y^2}=\dfrac{x^2+y^2}{x^2-y^2}\)
c: \(=\dfrac{x+1-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
d: \(=\dfrac{\left(x+2\right)\cdot y-x\left(y-2\right)}{xy\left(x+y\right)}\)
\(=\dfrac{2y+2x}{xy\left(x+y\right)}=\dfrac{2}{xy}\)
e: \(=\dfrac{1}{x\left(2x-3\right)}-\dfrac{1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{2x+3-x}{x\left(2x-3\right)\left(2x+3\right)}=\dfrac{x+3}{x\left(2x-3\right)\left(2x+3\right)}\)
g: \(=\dfrac{-2x+x+3-x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2}{x+3}\)
thực hiện phép tính
a, \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}\)
b, \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)
a: \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}=\dfrac{x^2+4x+4}{3x+6}=\dfrac{x+2}{3}\)
b: \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)
\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}\)
=0