Cho ΔABC vuông tại A, qua A dựng (O;R) tiếp xúc với BC tại B và dựng (O'r) tiếp xúc với BC ở C . Gọi M, N là trung điểm AB, AC .OM và O'N kéo dài cắt nhau ở K.
1,C/m A,O,O' thẳng hàng
2. C/m tứ giác AMKN nội tiếp
Cho ΔABC , góc A =90 độ , góc B=60độ .
a, So sánh AD và BD
b, Trên BC lấy D sao cho BD=AB . Qua D dựng đường vuông góc với BC cắt tia đối của AB tại E . Chứng minh : ΔABC=ΔDBE
c, H là giao điểm của AC và ED . Chứng minh : BH là phân giác của góc ABC
d, Qua B vẽ đường thẳng vuông góc AB cắt ED tại K . Chứng minh : ΔHBK đều
b) Xét ΔABC vuông tại A và ΔDBE vuông tại D có
AB=BD(gt)
\(\widehat{ABC}\) chung
Do đó: ΔABC=ΔDBE(cạnh góc vuông-góc nhọn kề)
c) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD(gt)
Do đó: ΔBAH=ΔBDH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
hay BH là tia phân giác của \(\widehat{ABC}\)
d) Ta có: BH là tia phân giác của \(\widehat{ABC}\)(cmt)
nên \(\widehat{ABH}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
Ta có: \(\widehat{ABH}+\widehat{HBK}=90^0\)
\(\Leftrightarrow\widehat{HBK}+30^0=90^0\)
hay \(\widehat{HBK}=60^0\)
Xét ΔCHD vuông tại D và ΔCBA vuông tại A có
\(\widehat{ACB}\) chung
Do đó: ΔCHD\(\sim\)ΔCBA(g-g)
Suy ra: \(\widehat{CHD}=\widehat{CBA}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{CHD}=60^0\)
mà \(\widehat{CHD}=\widehat{HKB}\)(hai góc so le trong, BK//AC)
nên \(\widehat{HKB}=60^0\)
Xét ΔHBK có
\(\widehat{HKB}=60^0\)(cmt)
\(\widehat{HBK}=60^0\)(cmt)
Do đó: ΔHBK đều(Dấu hiệu nhận biết tam giác đều)
bài 1: cho ΔABC vuông tại B có góc A= 60 độ , vẽ đường phân giác AD (D thuộc BC). Qua D dựng đường thẳng vuông góc với AC tại M và ctaw đường thẳng AB tại N . Gọi I là giao điểm của AD và BM.chứng minh:
a)ΔBAD=ΔMAD
b)AD là đường trung trực của đoạn thẳng BM
c)ΔANC là tam giác đều
d)BI < ND
bài 2: cho tam giác ABC cân tại A , kẻ Ah vuông góc với BC (H thuộc BC). Gọi M là trung điểm cuẩ BH .Trên tia đối của MA lấy điểm N sao cho MN=MA
a)chứng minh rằng: △AMH=△NMB và NB⊥BC
b)chứng minh rằng:AH=NB, từ đó suy ra NB<AB
c)chứng minh rằng:BAM < MAH
d)gọi I là trung điểm của NC .chứng minh rằng: ba điểm A,H,I thẳng hàng
Cho ΔABC vuông ở A, dựng đường tròn tâm I đi qua B và tiếp xúc với AC. Cho AB = 24cm, AC = 32cm. Tính bán kính đường tròn tâm I?
Cho ΔABC vuông ở A, dựng đường tròn tâm I đi qua B và tiếp xúc với AC. Cho AB = 24cm, AC = 32cm. Tính bán kính đường tròn tâm I?
Em xem lại đề bài nhé. Với bài toán này, đường trong tâm I không là duy nhất.
cho ΔABC cân tại A, có góc BAC nhọn, qua A vẽ tia phân giác BAC cắt BC tại D a, chứng minh Δ ABD= ΔACD b, Vẽ đường trung tuyến CF cuả ΔABC cắt AD tại G chứng minh G là trọng tâm của ΔABC c, Gọi H là trung điểm của DC . Qua H vẽ đường thẳng vuông góc với cạnh DC cắt AC tại E. chưng minh ΔDEC câb d, chứng minh ba điểm BGE thẳng hàng và AD > BD.
Cho ΔABC vuông tại A (AC > AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
C/m: a) ΔABC ∼ ΔHAC.
b) EC . AC = DC . BC.
c) ΔBEC ∼ ΔADC.
Cho ΔABC có độ dài ba cạnh là a,b,c.Các phân giác BE và CF giao nhau tại O. Chứng minh: ΔABC vuông tại A<=> 2BO.CO=BE.CF
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
cho ΔABC vuông tại A, góc ABC=60\(^o\) . tia p/g góc B cắt AC tại E. từ E vẽ EH⊥BC(H∈BC)
a. CM ΔABE= ΔHBE
b. qua H vẽ HK // BE (K∈AC). CM ΔEHK đều
c. HE cắt BA tại M, MC cắt BE tại N. CM NM=NC
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
=>AB=1/2BC
=>BH=1/2BC
=>H là trung điểm của BC
Xét ΔCBE có
H là trung điểm của BC
HK//BE
Do đó: K là trung điểm của CE
Ta có: ΔHCE vuông tại H
mà HK là đường trung tuyến
nên HK=KE=CE/2
=>ΔHKE cân tại K
mà \(\widehat{KEH}=60^0\)
nên ΔHKE đều