B=1/1.2.3+1/2.3.4+.....+1/18.19.20. Chứng minh B<1/4
Nhận thấy: \(\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2}{2\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2+n-n}{2n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n-n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}-\dfrac{n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\cdot\left(n+2\right)}\right]\)
\(\Rightarrow A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{4}-\dfrac{1}{760}< \dfrac{1}{4}\)
Vậy \(A< \dfrac{1}{4}\)
Chứng minh rằng: 1/1.2.3+1/2.3.4+1/34.5+.....+1/18.19.20<1/4
Cho \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}.\)
Chứng minh rằng:\(B< \frac{1}{4}.\)
2B=\(\frac{2}{1.2.3}\)+.....+\(\frac{2}{18.19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)+\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\).......+\(\frac{1}{18.19}\)-\(\frac{1}{19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{19.20}\)
B=\(\frac{1}{1.2}\):2-\(\frac{1}{19.20}\):2
B=\(\frac{1}{1.2}\).\(\frac{1}{2}\)-\(\frac{1}{19.20}\).\(\frac{1}{2}\)
=\(\frac{1}{4}\)-\(\frac{1}{19.20.2}\)<\(\frac{1}{4}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{19.20}\)
\(B=\left(\frac{1}{2}-\frac{1}{19.20}\right):2\)
\(B=\frac{189}{760}\)
Tớ đồng ý với kết quả của Jenny Dolly Marion _ Love For You và Đầu Vụ Công
Cả hai người đều làm đúng
tớ ra kết quả giống cả hai cậu
tk tớ nhé ( chúc bn học giỏi )
Chứng minh:
A=1/1.2.3+1/2.3.4+1/3.4.5+...+1/18.19.20 < 1/4
1. Chứng minh rằng:
a) A = 1/ 1.2.3 + 1/2.3.4 + 1/3.4.5 + .... + 1/ 18.19.20 < 1/4
b ) B = 36/1.2.3 + 36/3.5.7 + .... + 36/25.27.29 < 3
Giúp mình nha , cảm ơn nhiều lắm !!
B= 1/1.2.3+1/2.3.4+...+1/18.19.20
1) tính :
a) 2/ 1.2.3 + 2/ 2.3.4 + ...+ 2/ 98.99.100
b) 4/ 2.4.6 + 4/ 4.6.8 + ...+ 4/ 50.52.54
c) 8/ 1.3.5 + 8/ 3.5.7 + ...+ 8/ 18.19.20
d) 1/ 1.2.3 + 1/ 2.3.4 + ... + 1/ 18.19.20
1, Chứng minh
a) A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
b) B=\(\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+....+\dfrac{36}{25.26.27}< 3\)
a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760
Cho \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{18.19.20}\) Chứng minh \(A< \dfrac{1}{4}\)
Help me!!!!!!!
\(\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\) Gio thi tu ma lam ko thích viết nữa mệt
A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{18.19.20}\)
Theo công thức:
\(\dfrac{2m}{b.\left(b+m\right).\left(b+2m\right)}=\dfrac{1}{b.\left(b+m\right)}-\dfrac{1}{\left(b+m\right).\left(b+m.2\right)}\)Ta có:
2A=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{18.19.20}\)
2A=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)2A=\(\dfrac{1}{1.2}-\dfrac{1}{19.20}\)
2A=\(\dfrac{1}{2}-\dfrac{1}{19.20}\)
A=\(\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)
A=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\)
A=\(\dfrac{1}{2}.\dfrac{19.20-2}{2.19.20}\)
A=\(\dfrac{19.20-2}{2.2.19.20}\) < \(\dfrac{19.20}{2.2.19.20}\) = \(\dfrac{1}{4}\)
\(\Rightarrow\) A<\(\dfrac{1}{4}\)
mik xin loi phan Ta có
\(\dfrac{2m}{b.\left(b+m\right)\left(b+2m\right)}=\dfrac{1}{b.\left(b+m\right)}-\dfrac{1}{\left(b+m\right).\left(b+2m\right)}\)Ta có blablabla