Những câu hỏi liên quan
PY
Xem chi tiết
DQ
23 tháng 11 2017 lúc 21:11

Vì số 3 và số 33 đều chia hết cho 3 nên 5. /b/ chia hết cho 3

suy ra /b/ =0;3;6 ( vì 5./b/ nhỏ hơn hoặc bằng 33). suy ra b = 0; 3;6; -3;-6

b036-3-6
a11 hoặc -116 hoặc -61 hoặc -16 hoặc -61 hoặc -1

Vậy có tất cả 10 căp (a, b) là (11,0); (-11,0); (6,3); (-6,3); (1,6); (-1,6); (6,-3); (-6,-3);(1,-6); (-1,-6)

         

Bình luận (0)
NH
Xem chi tiết
HL
6 tháng 4 2015 lúc 0:33

Vì 3 |a| chia hết cho 3,33 chia hết cho 3 nên 5|b| chia hết cho 3 (1)

mà (3;5)=1 (2)

Từ (1) và (2)=> |b| chia hết cho 3 (3)

mà 0=< 5|b| =<33 (do 3|a|>=0 và 5|b|>=0)

=> 0=<b =<6 hoặc -6 =<b=<0(4)

Từ (3) và (4)=>b thuộc { 0;3;6;-3;-6}

Với b=0 thì a=11;-11

với b=3 thì a =6;-6

với b=-3 thì a=6;-6

với b=6 thì a=1;-1

với b=-6 thì a=1;-1

 

 

Bình luận (0)
H24
15 tháng 4 2017 lúc 21:48

hoa lưu ly, bn sai kết quả rùi

Bình luận (0)
TD
Xem chi tiết
ND
15 tháng 6 2020 lúc 20:57

Mình viết lại đề cho bạn nhé: Tìm cặp số nguyên (a;b) biết: 3|a+5||b|=33

Bài làm:

Ta có: \(3\left|a+5\right|\left|b\right|=33\)

\(\Leftrightarrow\left|a+5\right|\left|b\right|=11\)

Ta lại có: \(11=1.11=\left(-1\right)\left(-11\right)\)

Mà \(\hept{\begin{cases}\left|a+5\right|\ge0\\\left|b\right|\ge0\end{cases}}\)với mọi a,b nguyên

=> Ta có các trường hợp sau:

+TH1: Nếu |a+5|=1 và |b|=11

=> \(\orbr{\begin{cases}a=-4\\a=-6\end{cases}}\)\(\orbr{\begin{cases}b=11\\b=-11\end{cases}}\)

+TH2: Nếu |a+5|=11 và |b|=1

=> \(\orbr{\begin{cases}a=6\\a=-16\end{cases}}\)\(\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)

Vậy ta có 8 cặp số (a;b) thỏa mãn: \(\left(-4;11\right);\left(-4;-11\right);\left(-6;11\right);\left(-6;-11\right);\left(6;1\right);\left(6;-1\right);\left(-16;1\right);\left(-16;-1\right)\)

Học tổt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
NT
2 tháng 1 2023 lúc 21:10

a: \(\Leftrightarrow\left(x+3;y-2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;9\right);\left(4;3\right);\left(-4;-5\right);\left(-10;1\right)\right\}\)

b: (x+1)(xy+2)=5

=>\(\left(x+1;xy+2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,xy\right)\in\left\{\left(0;3\right);\left(4;-1\right);\left(-2;-7\right);\left(-6;-3\right)\right\}\)

mà x,y là số nguyên

nên (x,y)=\(\varnothing\)

Bình luận (0)
TH
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
LK
Xem chi tiết
NT
9 tháng 12 2023 lúc 22:18

a: \(B=3+3^2+3^3+...+3^{60}\)

\(=3\left(1+3+3^2+...+3^{59}\right)⋮3\)

=>B là hợp số

b: \(x^3+5^y=133\)

=>\(\left\{{}\begin{matrix}x^3< 133\\5^y< 133\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \sqrt[3]{133}\simeq5,1\\y< log_5133\simeq3,03\end{matrix}\right.\)

mà x,y là các số nguyên dương

nên \(\left\{{}\begin{matrix}x\in\left\{1;2;3;4;5\right\}\\y\in\left\{1;2;3\right\}\end{matrix}\right.\)

mà \(x^3+5^y=133\)

nên x=2 và y=3

Bình luận (0)
LM
Xem chi tiết