Những câu hỏi liên quan
PD
Xem chi tiết
LL
3 tháng 10 2021 lúc 17:47

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

Bình luận (0)
KS
3 tháng 10 2021 lúc 17:52

B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13

Bình luận (0)
DL
Xem chi tiết
KL
18 tháng 10 2023 lúc 10:14

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

Bình luận (0)
DL
18 tháng 10 2023 lúc 10:25

.

Bình luận (0)
NM
Xem chi tiết
NL
20 tháng 4 2018 lúc 21:15

\(A=3+3^2+3^3+3^4+.......+3^{100}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=3.40+.........+3^{97}.40\)

\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)

\(\Rightarrow A⋮40\)( 1 )

Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)

\(\Rightarrow A⋮120\)

Vậy \(A⋮120\)( ĐPCM )

Bình luận (0)
MY
Xem chi tiết
LN
25 tháng 9 2016 lúc 14:05

mình ko biết

Bình luận (0)
NH
5 tháng 2 2021 lúc 21:50

phải là chứng minh A chia hết cho 121

Bình luận (0)
 Khách vãng lai đã xóa
AB
Xem chi tiết
MH
24 tháng 9 2021 lúc 15:58

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13

Bình luận (0)
TK
Xem chi tiết
US
13 tháng 11 2021 lúc 16:54

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NB
Xem chi tiết
H24
29 tháng 10 2023 lúc 20:20

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)

Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)

nên \(B\vdots4\).

Bình luận (0)
KR
29 tháng 10 2023 lúc 20:21

`#3107.101107`

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)

\(=4\left(3+3^3+3^5+3^7\right)\)

Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$

`\Rightarrow B \vdots 4`

Vậy, `B \vdots 4.`

Bình luận (0)
H24
29 tháng 10 2023 lúc 20:22

B=3+32+33+34+35+36+37+38=(3+32)+(33+34)+(35+36)+(37+38)=3(1+3)+33(1+3)+35(1+3)+37(1+3)=34+334+354+374=4(3+33+35+37)

Vì 4⋅(3+33+35+37)⋮4

nên �⋮4.

Bình luận (0)
BT
Xem chi tiết
LD
23 tháng 12 2023 lúc 22:25

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3

 

Bình luận (0)