Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NC
Xem chi tiết
NT
22 tháng 1 2024 lúc 8:27

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

Bình luận (0)
BD
Xem chi tiết
H24
18 tháng 3 2021 lúc 21:53

+) Giá trị nhỏ nhất

Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{-\left(x^2+1\right)+x^2+6x+9}{x^2+1}\) \(=-1+\dfrac{\left(x+3\right)^2}{x^2+1}\ge-1\)

  Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

+) Giá trị lớn nhất 

Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{9\left(x^2+1\right)-9x^2+6x-1}{x^2+1}\) \(=9-\dfrac{\left(3x-1\right)^2}{x^2+1}\ge9\)

  Dấu bằng xảy ra \(\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

  Vậy \(P_{Min}=-1\) khi \(x=-3\)

         \(P_{Max}=9\) \(\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (0)
ML
Xem chi tiết
XO
21 tháng 8 2023 lúc 0:11

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

Bình luận (0)
H24
Xem chi tiết
TN
4 tháng 10 2021 lúc 15:34

b)

Vì (3x+12)^2 luôn > hoặc = 0 với mọi x

=> (3x+12)^2-100> hoặc =0 -100

Vậy GTNN của B =-100

Dấu "=" xảy ra khi 3x+12=0

3x=-12

x=-4

 

Bình luận (0)
HN
Xem chi tiết
NL
12 tháng 12 2021 lúc 22:21

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

Bình luận (0)
H24
Xem chi tiết
HC
Xem chi tiết
PH
Xem chi tiết
KN
5 tháng 8 2019 lúc 10:42

b) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy GTNN của bt là -36\(\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Bình luận (0)
KN
5 tháng 8 2019 lúc 10:48

a) \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\frac{4}{3}\right)\)

\(=3\left[\left(x-1\right)^2-\frac{4}{3}\right]=3\left(x-1\right)^2-4\ge-4\)

Vậy GTNN của bt là - 4\(\Leftrightarrow x=1\)

Bình luận (0)
MP
Xem chi tiết