Tìm các số nguyên x, y biết:
a) 2xy + 5x =36
b) xy - x + 3y - 2 =6
cần gấp
Câu 12. Tìm các số nguyên x; y biết:
a) xy + 2x – 3y = 14
b) 2xy + 5y – 3x = 18
Tìm hai số x, y biết:
a) \(\dfrac{x}{y}=\dfrac{-3}{4}\) và 3y - 2x = 36
b) -2x = 5y và 3x - 2y = 38
Cứu em với, em cần gấp (lm cả 2 câu ạ)
\(\dfrac{x}{y}=\dfrac{-3}{4}\)
⇒\(\dfrac{x}{-3}=\dfrac{y}{4}\)
⇒\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)
⇒\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)
Tìm các số nguyên x,y biết:
a,(x+1)(y-2) = 3
b,(2x - 1)(3y + 1) = 12
c, xy - x + y - 2 = 0
CÁC BẠN LÀM NHANH LÊN HỘ MÌNH NHÉ, NHỚ TRÌNH BÀY ĐẦU ĐỦ NHÉ :))
a)(x+1)(y-2)=3
x+1;y-2 thuộc Ư(3){1;-1;3;-3}
ta có bảng sau :
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
y-2 | 1 | -1 | 3 | -3 |
y | 3 | 1 | 5 | -1 |
vậy cặp x;y thuộc {(2;3);(0;1);(4;5);(-2;-1)}
Tìm các số nguyên X và y thỏa mãn:
a) (x-2)(2y-1)=6
b) 2xy+x=5y
c) 2xy+5x+3y=1
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
phần gợi ý cũng chép lun hả mày đúng là người vô liên xỉ đó VRCT_I Love Class 6A
a,\(x^2-3y^2+2xy+2x+2y=2\)
b,a(x+y)=xy(a là số nguyên tố)
c,x^2-5x-xy-5y=1
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Tìm các số nguyên (x,y) thỏa mãn x²+xy-3y-5x+3=0
\(x^2+xy-3y-5x+3=0\)(*)
\(\Leftrightarrow x^2+\left(y-5\right).x+3-3y=0\)
Coi đây là pt bậc 2 ẩn x
Ta có:
\(\Delta=\left(y-5\right)^2-4.1\left(3-3y\right)\\ =y^2-10y+25-12+12y\\ =y^2+2y+13\)
Để pt có nghiệm nguyên thì Δ là số chính phương
\(\text{Đặt}y^2+2y+13=k^2\left(k\in N\right)\\ \Rightarrow\left(y^2+2y+1\right)-k^2+12=0\\ \Rightarrow\left(y+1\right)^2-k^2=-12\\ \Rightarrow\left(y-k+1\right)\left(y+k+1\right)=-12\)
Vì y, k ∈ N\(\Rightarrow\left\{{}\begin{matrix}y-k+1,y+k+1\in Z\\y-k+1,y+k+1\inƯ\left(-12\right)\\y-k+1< y+k+1\end{matrix}\right.\)
Ta có bảng:
y-k+1 | -1 | -2 | -3 | -4 | -6 | -12 |
y+k+1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | \(4,5\left(loại\right)\) | 1(tm) | -0,5(loại) | -1(tm) | -3(tm) | -6,5(loại) |
Với y=1 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Với y=-1 thay vào (*) ta không tìm được x nguyên
Với y=-3 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(4;1\right);\left(2;-3\right);\left(6;-3\right)\right\}\)
tìm các cặp số tự nhiên x, y biết:
xy+5x+5y=92xy+5x-2y=105xy-3x+2y-11=0xy-2x+y-4=0xy-x+2y-2=42xy+2x+3y=12nhanh minh tick
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
các câu còn lại tương tự như bài mình vừa làm
Tìm các số nguyên x;y thỏa mãn :
a/ 2xy - 4x + 3y = 11
b/ 2xy - 3x + 5y = 4
c/ x2 - xy + x = 4y - 5
d/ 2x2 - 2xy + x + y = 14