Những câu hỏi liên quan
KT
Xem chi tiết
LD
26 tháng 5 2016 lúc 20:23

Gọi d là ƯC của 4n + 7 và 6n + 1

Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d

<=>   12n + 21 chia hết cho d và 12n + 2 chia hết cho d

=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d

Vì 19 là số nguyên tố => d = 1

Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản

Bình luận (0)
NA
26 tháng 5 2016 lúc 20:29

Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản

Bình luận (0)
NT
Xem chi tiết
HM
Xem chi tiết
LX
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
NT
7 tháng 11 2023 lúc 17:16

loading...

Bình luận (0)
DT
7 tháng 11 2023 lúc 15:16

help me

Bình luận (0)
KL
7 tháng 11 2023 lúc 16:01

Chứng minh gì vậy em?

Bình luận (2)
NN
Xem chi tiết
BL
23 tháng 6 2021 lúc 22:43

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)

Bình luận (0)

Giải:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

Ta có:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\) 

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\) 

\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

\(=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

Mà \(\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

\(\Rightarrow2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\left(đpcm\right)\)

Bình luận (0)
DT
Xem chi tiết
NT
7 tháng 11 2023 lúc 17:15

Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2021}}\)

=>\(3A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2020}}\)

=>\(3A-A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2020}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{2021}}\)

=>\(2A=1-\dfrac{1}{3^{2021}}\)

=>\(A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{2021}}< \dfrac{1}{2}\)

Bình luận (2)
DT
7 tháng 11 2023 lúc 17:01

help me pls

Bình luận (0)
NQ
Xem chi tiết
TL
11 tháng 5 2020 lúc 12:51

Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{7\cdot8}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< 1-\frac{1}{8}< 1\)

Bình luận (0)
 Khách vãng lai đã xóa