Những câu hỏi liên quan
B1
Xem chi tiết
NL
Xem chi tiết
NL
30 tháng 8 2017 lúc 12:59

x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1 
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x) 
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1] 
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0 
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7] 
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7 
Vay GTLN A=7 khi x=2 
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4] 
GTLN B= 1/4 khi x=1/2 
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4) 
= -2[(x-1/2)^2 +9/4] 
GTLN N= -9/2 khi x=1/2

Bình luận (0)
NN
Xem chi tiết
KK
10 tháng 4 2019 lúc 20:56

a) Ta có: P(x) = 2x5 + 2 - 6x2 - 3x3 + 4x2 - 2x + x3 + 4x5

                       = (2x5 + 4x5) + 2 - (6x2 - 4x2) - (3x3 - x3) - 2x

                      =       6x5 + 2 - 2x2 - 2x3 - 2x

b) P(x) = 6x5 - 2x3 - 2x2 - 2x + 2

Bình luận (0)
KK
10 tháng 4 2019 lúc 20:56

c) Bậc của P(x) là 5

Bình luận (0)
NN
10 tháng 4 2019 lúc 20:59

a,\(P\left(x\right)=2^5+2-6x^2-3x^3+4x^2-2x+x^3+4x^5\)

   \(P\left(x\right)=(2x^5+4x^5)+\left(-6x^2+4x^2\right)+\left(-3x^3+x^3\right)+2-2x\)

   \(P\left(x\right)=6x^5-2x^2-2x^3+2-2x\)

b, \(P\left(x\right)=6x^5-2x^3-2x^2-2x+2\)

c, Bậc của P(x)=5

Bình luận (0)
TT
Xem chi tiết
EC
15 tháng 8 2016 lúc 18:33

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

Bình luận (0)
HN
15 tháng 8 2016 lúc 18:31

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

Bình luận (0)
LF
15 tháng 8 2016 lúc 18:38

a)x2-6x+10

=x2-6x+9+1

=(x-3)2+1

Ta thấy:\(\left(x-3\right)\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+1>0\) với mọi x

b)4x-x2-5

=-(x2-4x+5)

=-(x-4x+4+1)

=-(x-2)2-1

Ta thấy:\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Bình luận (0)
NH
Xem chi tiết
KN
28 tháng 6 2019 lúc 6:35

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

Bình luận (0)
NA
28 tháng 6 2019 lúc 10:42

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

Bình luận (0)
PN
Xem chi tiết
XO
13 tháng 7 2021 lúc 14:56

a) B = x - x2 + 2

\(-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-2\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

=> Max B = 9/4 

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Max B = 9/4 <=> x = 1/2

d) Ta có P = \(x-x^2-1=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}+1\right)=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

=> Max P = -3/4 

Dấu "=" xảy ra <=> x -1/2 = 0 <=> x = 1/2

Vậy Max P = -3/4 <=> x = 1/2 

Bình luận (0)
 Khách vãng lai đã xóa
NT
13 tháng 7 2021 lúc 14:57

uk bn eeeeeee

Bình luận (0)
 Khách vãng lai đã xóa
XO
13 tháng 7 2021 lúc 15:03

 b) C = 6x - x2 - 10 

= -(x2 - 6x + 9 + 1) = -(x -3)2 - 1 \(\le-1\)

=> Max C = -1

Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3

Vậy Max C = -1 <=> x = 3

c) Ta có D = 4x - x2 + 5 = -(x2 - 4x - 5) = -(x2 - 4x + 4 - 9) = -(x - 2)2 + 9 \(\le9\)

=> Max D = 9

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy Max D = 9 <=> x = 2

e) Ta có Q = -x2 + 10x + 28 = -x2 + 10x - 25 + 53 = -(x - 5)2 + 53 \(\le53\)

=> Max Q = 53 

Dấu "=" xảy ra <=> x - 5 = 0 <=> x = 5

Vậy Max Q = 53 <=> x = 5

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
18 tháng 10 2020 lúc 13:41

Bài 2 : 

a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)

b, \(5x\left(x-2020\right)-x+2020=0\)

\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)

\(\Leftrightarrow x=\frac{1}{5};2020\)

c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)

\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow x=-3;-\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
KD
18 tháng 10 2020 lúc 13:45

a,x2-4x=0

= x.(x-4)=0

=> x=0 hoặc x-4=0

=>x=0 hoặc x=4

Bình luận (0)
 Khách vãng lai đã xóa
KN
18 tháng 10 2020 lúc 14:18

a. x2 - 4x = 0

<=> x ( x - 4 ) = 0

<=>\(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

b. 5x ( x - 2020 ) - x + 2020 = 0

<=> 5x ( x - 2020 ) - ( x - 2020 ) = 0

<=> ( 5x - 1 ) ( x - 2020 ) = 0

<=>\(\orbr{\begin{cases}5x-1=0\\x-2020=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{5}\\x=2020\end{cases}}\)

c. ( 4x + 5 )2 - ( 2x - 1 )2 = 0

<=> 16x2 + 40x + 25 - 4x2 + 4x - 1 = 0

<=> 12x2 + 44x + 24 = 0

<=> 4 ( 3x2 + 11x + 6 ) = 0

<=> ( 3x2 + 9x ) + ( 2x + 6 ) = 0

<=> 3x ( x + 3 ) + 2 ( x + 3 ) = 0

<=> ( 3x + 2 ) ( x + 3 ) = 0

<=>\(\orbr{\begin{cases}3x+2=0\\x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-3\end{cases}}\)

d. x2 + 6x - 8 = 0

<=> x2 + 6x + 9 = 17

<=> ( x + 3 )2 = 17 

<=>\(\orbr{\begin{cases}x+3=\sqrt{17}\\x+3=-\sqrt{17}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{cases}}\)

e. 4x2 + 2x - 6 = 0

<=> 2 ( 2x2 + x - 3 ) = 0

<=> ( 2x2 + 3x ) - ( 2x + 3 ) = 0

<=> x ( 2x + 3 ) - ( 2x + 3 ) = 0

<=> ( x - 1 ) ( 2x + 3 ) = 0

<=>\(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x=-\frac{3}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
H24
12 tháng 9 2017 lúc 17:10

Giải:

a) \(x^2-6x+10\)

\(=x^2+6x+9+1\)

\(=\left(x+3\right)^2+1\)

\(\left(x+3\right)^2\ge0\forall x\)

Nên \(\left(x+3\right)^2+1\ge1\forall x\)

Vậy \(\left(x+3\right)^2+1>0\forall x\).

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x+2\right)^2-1\)

\(-\left(x-2\right)^2\le0\forall x\)

Nên \(-\left(x+2\right)^2-1\le-1\forall x\)

Vậy \(-\left(x+2\right)^2-1< 0\forall x\).

Chúc bạn học tốt!

Bình luận (0)
TL
12 tháng 9 2017 lúc 17:20

\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)

\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)

Bình luận (0)
LD
Xem chi tiết