Những câu hỏi liên quan
DG
Xem chi tiết
AH
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NT
25 tháng 12 2021 lúc 10:14

Vì \(n^2+n\) là số chẵn

và 2n+1 là số lẻ

 nên \(n^2+n\) và 2n+1 là hai số nguyên tố cùng nhau 

Bình luận (1)
H24
25 tháng 12 2021 lúc 10:19

Hình như  sai ý đề bài rồi ạ, n^2+n là số chẵn thì nó cũng có thể chia hết cho 3, 2n+1 là số lẻ thì nó cũng có thể chia hết cho 3 mà ạ, nguyên tố cùng nhau là ước chung lớn nhất của nó = 1 ạ

Bình luận (0)
LB
Xem chi tiết
TH
29 tháng 12 2015 lúc 16:02

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 4 2017 lúc 18:02

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

Bình luận (0)
H24
25 tháng 12 2021 lúc 10:30

Thank you

 

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 6 2017 lúc 13:15

Bình luận (0)
TL
31 tháng 10 2024 lúc 20:57

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

Bình luận (0)
NL
Xem chi tiết
HC
13 tháng 12 2016 lúc 10:59

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

Bình luận (0)
CN
Xem chi tiết
VG
22 tháng 12 2021 lúc 17:36

Gọi (2n+1, n+1) = d (d thuộc N*)

⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d

⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d

⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d

⇒1⋮d⇒1⋮d

Mà d thuộc N*

nên d = 1

=> (2n+1, n+1) = 1

=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau  (đpcm)

Bình luận (0)
NA
Xem chi tiết
ND
25 tháng 12 2021 lúc 10:15

TL :

Vì \(n^2+n\) là số chẵn

và 2n+1 là số lẻ

 nên \(n^2+n\) và 2n+1 là hai số nguyên tố cùng nhau 

HT

Bình luận (0)
 Khách vãng lai đã xóa
NA
25 tháng 12 2021 lúc 10:25

Mình có lấy 1 ví dụ cụ thể nhé ạ.

Ví dụ: 66 là số chẵn, nó chia hết cho 3

           99 là số lẻ, nó cũng chia hết cho 3

=> Trong 2 số đó có 1 số chẵn, 1 số lẻ thì nó vân có ƯC lớn hơn 1

Nên nó không thể nguyên tố cùng nhau.

Mong các bạn có thể đọc kĩ đầu bài ạ. Cảm ơn rất nhiều ạ!

          

Bình luận (0)
 Khách vãng lai đã xóa
NL
2 tháng 1 2022 lúc 15:37

TL :

Ví dụ: 66 là số chẵn, nó chia hết cho 3

           99 là số lẻ, nó cũng chia hết cho 3

=> Trong 2 số đó có 1 số chẵn, 1 số lẻ thì nó vân có ƯC lớn hơn 1

Nên nó không thể nguyên tố cùng nhau.

#hoctot

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
PH
19 tháng 12 2015 lúc 19:51

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

Bình luận (0)
ND
19 tháng 12 2015 lúc 19:48

làm ơn làm phước cho mk 3 tick đi mk mà

please

Bình luận (0)