tìm số nguyên x để x^2+2/x+2 có giá trị nguyên
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Tìm x để
a) A=\(\dfrac{x^2+3x-1}{x+2}\) có giá trị là số nguyên (x ϵ Z)
b) B=\(\dfrac{x^2+x+3}{x+1}\) có giá trị là số nguyên (x ϵ Z)
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(C=\dfrac{x^4+3x^3+2x^2+6x-2}{x^2+2}\)
\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)
\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)
\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)
Tìm số nguyên x để phân số x + 2 / 2 x + 1 có giá trị là số nguyên
\(\dfrac{2x+4}{2x+1}=\dfrac{2x+1+3}{2x+1}=1+\dfrac{3}{2x+1}\Rightarrow2x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2x+1 | 1 | -1 | 3 | -3 |
x | 0 | -1 | 1 | -2 |
Nguyễn Huy Tú biến đổi sai
\(\frac{x+2}{2x+1}=\frac{2.\left(x+2\right)}{2.\left(2x+1\right)}=\frac{2x+4}{4x+2}\)Chứ
tìm giá trị nguyên của x để a có giá trị nguyên để phân thức A=x-1 / x^2 -5x+7 có giá trị nguyên
A=3x-1/x-2 và B= x^2-x+1/x-2
1. Tìm giá trị nguyên của x để A,B có giá trị nguyên
2. với giá trị nguyên nào của x thì A,B đều có giá trị nguyên
A=3x-1/x-2 và B= x^2-x+1/x-2
1. Tìm giá trị nguyên của x để A,B có giá trị nguyên
2. với giá trị nguyên nào của x thì A,B đều có giá trị nguyên
A=3x-1/x-2 và B= x^2-x+1/x-2
1. Tìm giá trị nguyên của x để A,B có giá trị nguyên
2. với giá trị nguyên nào của x thì A,B đều có giá trị nguyên
a)\(A=\frac{3x-1}{x-2}=\frac{3\left(x-2\right)+5}{x-2}=\frac{3\left(x-2\right)}{x-2}+\frac{5}{x-2}=3+\frac{5}{x-2}\in Z\)
=>5 chia hết x-2
=>x-2 thuộc Ư(5)={1;-1;5;-5}
=>x thuộc {3;1;7;-3}
B phân tích tương tự
b)Để A,B thuộc Z
\(\Leftrightarrow\frac{x^2-x+1}{x-2}-\frac{3x-1}{x-2}=\frac{x^2+4x-2}{x+2}=\frac{\left(x+2\right)^2+6}{x+2}=x+2+\frac{6}{x+2}\in Z\)
=>6chia hết x+2
=>x+2 thuộc Ư(6)={..}
A=3x-1/x-2 và B= x^2-x+1/x-2
1. Tìm giá trị nguyên của x để A,B có giá trị nguyên
2. với giá trị nguyên nào của x thì A,B đều có giá trị nguyên