Những câu hỏi liên quan
HA
Xem chi tiết
H24
10 tháng 12 2021 lúc 19:48

Câu 2:

\(R1=R_{nt}-R2=9-6=3\Omega\)

\(=>R_{ss}=\dfrac{R1\cdot R2}{R1+R2}=\dfrac{3\cdot6}{3+6}=2\Omega\)

Chọn A

Bình luận (0)
KA
Xem chi tiết
ND
12 tháng 8 2021 lúc 9:31

nSO3=8/80=0,1(mol)

pthh: SO3 + H2O -> H2SO4

nH2SO4=nSO3=0,1(mol) => mH2SO4(tạo sau)= 0,1.98=9,8(g)

mH2SO4(tổng)= 100.9,8% + 9,8=19,6(g)

mddH2SO4(sau)=8+100=108(g)

=>C%ddH2SO4(sau)= (19,6/108).100=18,148%

Bình luận (0)
HA
Xem chi tiết
DL
18 tháng 2 2022 lúc 12:06

tk:

undefined

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 12 2021 lúc 14:51

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

Bình luận (0)
H24
Xem chi tiết
NL
16 tháng 11 2021 lúc 21:19

Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)

Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)  

Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)

Ta có:

\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)

\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

Bình luận (1)
HP
Xem chi tiết
GD
13 tháng 12 2023 lúc 18:47

Bài 11:

\(PTHH:2A+Cl_2\rightarrow2ACl\\TheoĐLBTKL:\\ m_A+m_{Cl_2}=m_{ACl}\\ \Leftrightarrow 9,2+m_{Cl_2}=23,4\\ \Rightarrow m_{Cl_2}=23,4-9,2=14,2\left(g\right)\\ n_{Cl_2}=\dfrac{14,2}{71}=0,2\left(mol\right)\\ n_A=2.0,2=0,4\left(mol\right)\\ M_A=\dfrac{9,2}{0,4}=23\left(\dfrac{g}{mol}\right)\\ \Rightarrow A\left(I\right):Natri\left(Na=23\right)\)

Bình luận (0)
HA
Xem chi tiết
HA
13 tháng 4 2022 lúc 18:30

Giusp mình với mọi người ơi!!!

 

Bình luận (0)
TD
Xem chi tiết
H24
19 tháng 5 2021 lúc 21:50

vẽ lại mạch ta có RAM//RMN//RNB

đặt theo thứ tự 3 R là a,b,c

ta có a+b+c=1 (1)

điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0

áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\)  \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)

\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)

dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)

từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)

vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )

 

 

Bình luận (2)
H24
19 tháng 5 2021 lúc 21:09

em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r

Bình luận (1)
KA
Xem chi tiết