Cho lục giác lồi ABCDEF có các cặp cạnh đối song song với nhau. Chứng minh rằng SACE >= 1/2 SABCDEF
Cho lục giác lồi abcdef có các cặp cạnh đối ab và de, bc và ef, CD và ef vừa song song vừa bằng nhau. Lục giác abcdef có nhất thiết là lục giác đều không
Cho lục giác lồi ABCDEF. Gọi \(A_1,B_1,C_1,D_1,E_1,F_1\) theo thứ tự là trọng tâm tam giác ABC, BCD, CDE, DEF,FAB. Chứng minh rằng lục giác \(A_1B_1C_1D_1E_1F_1\) có các cạnh đối diện song song và bằng nhau.
Cho lục giác lồi ABCDEF. Gọi \(A_1,B_1,C_1,D_1,E_1,F_1\) theo thứ tự là trọng tâm tam giác ABC, BCD, CDE, DEF,FAB. Chứng minh rằng lục giác \(A_1B_1C_1D_1E_1F_1\) có các cạnh đối diện song song và bằng nhau.
Cho lục giác lồi ABCDEF, gọi các điểm \(A_1,B_1,C_1,D_1,E_1,F_1\) theo thứ tự là trọng tâm tam giác ABC, BCD, CDE, DEF, FEA, FAB. Chứng minh rằng lục giác \(A_1B_1C_1D_1E_1F_1\) có các cạnh song song và bằng nhau.
Cho lục giác lồi ABCDEF, gọi các điểm \(A_1,B_1,C_1,D_1,E_1,F_1\) theo thứ tự là trọng tâm tam giác ABC, BCD, CDE, DEF, FEA, FAB. Chứng minh rằng lục giác \(A_1B_1C_1D_1E_1F_1\) có các cạnh song song và bằng nhau.
Cần chứng minh
\(\overrightarrow{A_1B_1}=\overrightarrow{E_1D_1}\), \(_{ }\overrightarrow{B_1C_1}=\overrightarrow{F_1E_1}\), \(\overrightarrow{C_1D_1}=\overrightarrow{A_1F_1}\)
Ta có :
\(\overrightarrow{OA_1}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}\) ; \(\overrightarrow{OD_1}=\frac{\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}}{3}\)
\(\overrightarrow{OB_1}=\frac{\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}}{3}\) ; \(\overrightarrow{OE_1}=\frac{\overrightarrow{OE}+\overrightarrow{OF}+\overrightarrow{OA}}{3}\)
Từ đó suy ra :
\(\overrightarrow{A_1B_1}+\overrightarrow{OD_1}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}}{3}=\overrightarrow{0B_1}+\overrightarrow{OE_1}\)
và do đó
\(\overrightarrow{A_1B_1}=\overrightarrow{E_1D_1}\)
Tương tự ta cũng có \(\overrightarrow{B_1C_1}=\overrightarrow{F_1E_1}\) ,\(\overrightarrow{C_1D_1}=\overrightarrow{A_1F_1}\) => Điều phải chứng minh
cho lục giác abcdef có cặp cạnh đối song song và bằng nhau cmr các đường chéo ad,be,cf đồng qui
cho lục giác abcdef có cặp cạnh đối song song và bằng nhau cmr các đường chéo ad,be,cf đồng qui
gọi giao điểm của AD và EB là O mà ABDE là hình bình hành nên O là trung điểm EB
Nối BF ; CE ta đc BCEF là hình bình hành nên EB và CF cắt nhau tại trung điểm EB là O
Cho lục giác lồi \(A_1A_2A_3A_4A_5A_6\) có diện tích bằng 1 và có các cặp cạnh đối song song, hai đường thẳng \(A_6A_1\); \(A_2A_3\) cắt nhau tại điểm \(B_1\), hai đường thẳng \(A_1A_2;A_3A_4\) cắt nhau tại điểm \(B_2\).;...; tương tự, \(A_{i-1}A_i;A_{i+1}A_{i+2}\) cắt nhau tại điểm \(B_i\) (xem \(A_7\) là \(A_1\) và \(A_8\) là \(A_2\)). Chứng minh rằng tổng diện tích của sáu tam giác \(A_iB_iA_{i+1}\), \(i=1,...,6\) không bé hơn 1.
Cho hình hộp \(ABCD.A'B'C'D'\) và một mặt phẳng \(\left( \alpha \right)\) cắt các mặt của hình hộp theo các giao tuyến \(MN,NP,PQ{\rm{,}}QR,RS,SM\) như Hình 18. Chứng minh các cặp cạnh đối của lục giác \(MNPQRS\) song song với nhau.
Ta có:
\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( \alpha \right) \cap \left( {ABC{\rm{D}}} \right) = MN\\\left( \alpha \right) \cap \left( {A'B'C'D'} \right) = Q{\rm{R}}\end{array} \right\} \Rightarrow MN\parallel Q{\rm{R}}\)
\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( \alpha \right) \cap \left( {AA'B'B} \right) = NP\\\left( \alpha \right) \cap \left( {CC'D'D} \right) = R{\rm{S}}\end{array} \right\} \Rightarrow NP\parallel R{\rm{S}}\)
\(\left. \begin{array}{l}\left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\\\left( \alpha \right) \cap \left( {AA'D'D} \right) = M{\rm{S}}\\\left( \alpha \right) \cap \left( {BB'C'C} \right) = PQ\end{array} \right\} \Rightarrow M{\rm{S}}\parallel PQ\)