Tìm x thỏa mãn: x + (x + 1) + (x + 2) + … + 2009 + 2010 = 2010 A.-2010 B.-2008 C.0 D.-2009
giá rị của x thỏa mãn x+4/2008+x+3/2009=x+2/2010+x+1/2011
\(\frac{x+4}{2008}+\frac{x+3}{2009}=\frac{x+2}{2010}+\frac{x+1}{2011}\)
\(\Leftrightarrow\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)
\(\Leftrightarrow\frac{x+2012}{2008}+\frac{x+2012}{2009}-\frac{x+2012}{2010}-\frac{x+2012}{2011}=0\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
\(\Leftrightarrow x+2012=0\)
\(\Leftrightarrow x=-2012\)
hộ mình cái
Bài 1: cho pt \(x^2-ax+a-1=0\) có 2 no x1, x2
Tính \(M=\dfrac{2x^2_1+x_1x_2+2x_1^2}{x^2_1x_2+x^2_2x_1}\)
Bài 2: cho a,b là no pt: \(30x^2-4x=2010\)
Tình \(N=\dfrac{30\left(a^{2010}+b^{2010}\right)-4\left(a^{2009}+b^{2009}\right)}{a^{2008}+b^{2008}}\)
Bài 2:
Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)
\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)
Bài 1:
Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)
\(\dfrac{x+1}{2010}+\dfrac{x+2}{2009}+\dfrac{x-3}{2008}+...+\dfrac{x-2009}{2}+\dfrac{x-2010}{1}=-2010\)
\(\Leftrightarrow\dfrac{x+1}{2010}+1+\dfrac{x+2}{2009}+1+...+\dfrac{x+2009}{2}+1+\dfrac{x+2010}{1}+1=0\)
=>x+2011=0
hay x=-2011
Tìm x:
a) x + (x+1) + (x+2) +...+ (x+2010)= 2029099
b) 2 + 4 + 6 + 8 +...+ 2x = 210
2) So Sánh:
a)\(A=\frac{2009^{2008+1}}{2009^{2009+1}}vàB=\frac{2009^{2009+1}}{2009^{2010+1}}\)
b) C= 1.3.5.....99 với \(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
Bài 2:b)Ta có:
D=(51*52*53*...*100):2^50.
=(51*53*55*...*99)*(52*54*56*...*100):2^50.
Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.
Lại có:
52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25) (vì 52;54;56;...;100 có 25 thừa số.
=26*27*28*...*50:2^25.
=(27*29*31*...*49)*(26*28*30*...*50):2^25
Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.
Lại có:
26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).
=13*14*15*...*25:2^12.
=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.
Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.
Giờ số nhỏ rồi bấm máy tính so sánh là được.\
=>C=D.
Vậy C=D.
mấy câu kia dễ rồi tự l;àm nha mk nhắc câu khó thôi.
tk cho mk nha các bn.
-chúc ai tk mk học giỏi-
1/
a, x + (x+1) + (x+2) +...+ (x+100) = 2029099
(x+x+x+...+x) + (1+2+...+100) = 2029099
2011x + 2021055 = 2029099
2011x = 2029099 - 2021055
2011x = 8044
x = 8044 : 2011
x = 4
b, 2+4+6+....+2x = 210
=> 2(1+2+3+...+x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x+1) = 14.15
=> x = 14
2/
a, Vì B < 1
\(\Rightarrow B< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}\)= A
Vậy A > B
b, Ta có:
\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.4....50\right)}{2^{50}.\left(1.2.3.4....50\right)}\)
\(=\frac{1.2.3.4.5.6.....100}{\left(2.1\right)\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)
\(=\frac{1.2.3.4.5.6......100}{2.4.6........100}=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
\(=1.3.5....99=C\)
Vậy C = D
D=(51*52*53*...*100):2^50.
=(51*53*55*...*99)*(52*54*56*...*100):2^50.
Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.
Lại có:
52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25) (vì 52;54;56;...;100 có 25 thừa số.
=26*27*28*...*50:2^25.
=(27*29*31*...*49)*(26*28*30*...*50):2^25
Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.
Lại có:
26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).
=13*14*15*...*25:2^12.
=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.
Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.
Giờ số nhỏ rồi bấm máy tính so sánh là được.\
=>C=D.
Vậy C=D
chúc cậu hôk tốt @_@
Ai giúp mình với,cô cho toàn bài khó.
B1:
a)Tìm x,y biết (x+y)^2=(x-1)(y+1)
b)Tìm x,y,z biết :9x^2+y^2+2z^2-18x+4z-6y +20=0
B2:
Cho x/a+y/b+z/c=1 và-a/x+b/y+c/z=0
C/m x^2/a^2 +y^2/b^2 +z^2/c^2=1
B3:
Tìm x
(2009-x)^2+(2009-x)(x-2010)+(x-2010)^2/(2009-x)^2-(2009-x)(x-2010)+(x-2010)^2=19/49
- Giải phương trình: \(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010}=3\)
\(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010}=3\)
\(\Leftrightarrow\frac{x-2008-2009-2010}{2008}+\frac{x-2008-2009-2010}{2009}+\frac{x-2008-2009-2010}{2010}=0\)
\(\Leftrightarrow\left(x-2008-2009-2010\right)\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)
\(\Leftrightarrow x-6027=0\Leftrightarrow x=6027\)
1) Cho đa thức A(x) = x2010 - 2009.x2009 - 2009.x2008 - ... - 2009.x + 1. Tính giá trị A(2010)
2) Cho đa thức bậc hai P(x) = ax2 + bx + c thỏa mãn cả hai điều kiện sau: P(0) = -2 và 4P(x) - P(2x-1) = 6x - 6. Chứng minh a+b+c = 0 và xác định đa thức P(x)
3) Tính giá trị đa thức
A = x4 + 2x3y - 2x3 + x2y2 - 2x2y - x(x+y) + 2x +3 biết x = 2 - y
1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).
Thay 2009 = x - 1 vào đa thức A(x), ta có:
A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1
=x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1
=x+1=2010 + 1 =2011.
Vậy giá trị của đa thức A(x) tại x =2010 là 2011
bạn Nguyễn Quang Bách ơi! bạn thiếu x^2009-x^2009
Tính giá trị của biểu thức A=\(x^{2010}-2009.x^{2009}-2009.x^{2008}-...-2009.x+1\) tại x=2010
1) Cho dãy tỉ số = nhau :
a1/a2 = a2/a3 = a3/a4 = ..... = a2008/a2009
CMR a1/a2009 = (a1 + a2 + a3 + .... + a2008/a2 + a3 + a4 + .... + a2009)2008
2) CMR nếu a(y + z) = b(x + z) = c(x + y) voi a,b,c khác nhau và khác 0 thì
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
3) Cho a,b,c,d khác 0 tinh
T = x2011+y2011 + z2011 + t2011
biết x,y,z,t thỏa mãn
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{b^{2010}}{b^2}+\frac{c^{2010}}{c^2}+\frac{d^{2010}}{d^2}\)
Giúp mk giải chi tiết nhah đg cần gấp
Bài 2 )
\(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(x+z\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}\)
\(\Leftrightarrow\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}\)
Đặt \(\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}=k\)
\(\Rightarrow\left\{\begin{matrix}bc=k\left(y+z\right)=ky+kz\\ac=k\left(x+z\right)=kx+kz\\ab=k\left(x+y\right)=kx+ky\end{matrix}\right.\) (1)
Gỉa sử điều cần chứng minh là đúng ta có
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
\(\Leftrightarrow\frac{y-z}{ab-ac}=\frac{z-x}{bc-ab}=\frac{x-y}{ac-bc}\)
Thế (1) vào biểu thức
\(\frac{y-z}{kx+ky-\left(kx+kz\right)}=\frac{z-x}{ky+kz-\left(kx+ky\right)}=\frac{x-y}{kx+kz-\left(ky+kz\right)}\)
\(\Leftrightarrow\frac{y-z}{ky-kz}=\frac{z-x}{kz-kx}=\frac{x-y}{kx-ky}\)
\(\Leftrightarrow\frac{y-z}{k\left(y-z\right)}=\frac{z-x}{k\left(z-x\right)}=\frac{x-y}{k\left(x-y\right)}\)
\(\Leftrightarrow\frac{1}{k}=\frac{1}{k}=\frac{1}{k}\) ( điều này luôn luôn đúng )
\(\Rightarrow\) ĐPCM