so sánh
A=13mũ100+1 trên 13 mũ 101 +1
B=13 mũ 99 +1 trên 13 mũ 100+1
so sánh ps a= 100 mũ 99+1 trên 100 mũ 89 + 1 , b= 100 mũ 98 + 1 trên 100 mũ 88
so sánh:2 mũ 6 và 6 mũ 2;7mũ 3+1 và 7mũ 3+1;13 mũ 14-13 mũ 13 và 13 mũ 15- 13 mũ 14;3 mũ 2+n và 2 mũ 3+n (n E*)
a: \(2^6=64\)
\(6^2=36\)
Do đó: \(2^6>6^2\)
c: \(7^{3+1}=7^4=7^3+2058\)
\(7^3+1=7^3+1\)
mà 2058>1
nên \(7^{3+1}>7^3+1\)
so sánh
a) (-27) mũ 27 và (-243)mũ 13
b) (-1/8)mũ 25 và (-1/128) mũ 13
c) 4mũ 50 và 8mũ 30
d) ( 1/9) mũ 17 và (1/27) mũ 12
dấu / là phần nha như là 1 phần 8 tui ghi là 1/8 nha
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
a) Ta có :
b)
a/ so sánh 199 mũ 20 với 100 mũ 24
b/so sánh A=10 mũ 15+1 trên 10 mũ 6+1 với B=10 mũ 16+1 trên 10 mũ 17+1
a
nAK.DNX. 0pwi9dOjkciopjopoijasd
so sánh
1/243 mũ 9 và 1/83 mũ 13
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{8^{13}}\)
cho A= 1+ 3 + 3 mũ 2 + 3 mũ 3 +......+ 3 mũ 101 chứng minh A chia hết cho 13
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
A = 1 + 3 + 32 + .... + 3101
= [ 1+3+32 ] + ..... + [ 399 + 3100 +3101 ]
= [ 1+ 3+ 32 ] + .... + 399 . [ 1+3+32 ]
= 13. [ 1 + 33 + .... + 399 ] ⋮ 13
So sánh 2 phân số sau:A bằng 13 mũ 19 + 1 phần 13 mũ 18+ 1 và B bằng 13 mũ 20 +1phần 13 mũ 19
so sánh 1 phần 243 tất cả mũ 9 và 1 phần 83 tất cả mũ 13
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{83^{13}}\)
mình chắc chắn luôn
-https://olm.vn/hoi-dap/detail/77727486175.html
Bài 5 :
a) Chứng minh rằng : 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/199.200/ 1/101 + 1/102 + 1/103 + ... + 1/200 = 1
b) So sánh A = 1 mũ 2/1.2 x 2 mũ 2/2.3 x 3 mũ 2/3.4 x 99 mũ 2/99.100 x 100 mũ 2/100.101 và B = 2 mũ 2/1.3 x 3 mũ 2/2.4 x 4 mũ 2/3.5
x .... x 59 mũ 2/58.60
Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<