Những câu hỏi liên quan
NT
Xem chi tiết
MY
21 tháng 12 2021 lúc 20:14

\(3x+4y=1\Leftrightarrow y=\dfrac{1-4y}{3}\)

\(\Rightarrow A=x^2+y^2\Leftrightarrow\left(\dfrac{1-4y}{3}\right)^2+y^2=\dfrac{\left(4y-1\right)^2}{9}+y^2=\dfrac{16y^2-8y+1+9y^2}{9}=\dfrac{25y^2-8y+1}{9}=\dfrac{\left(5y\right)^2-2.5y.\dfrac{4}{5}+\left(\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}=\dfrac{\left(5y-\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}\ge\dfrac{\dfrac{9}{25}}{9}=\dfrac{1}{25}\left(đpcm\right)\)

\(A_{min}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{25}\\x=\dfrac{3}{25}\end{matrix}\right.\)

Bình luận (0)
NM
22 tháng 12 2021 lúc 8:07

Áp dụng Bunhiacopski:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=1\\ \Leftrightarrow25\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\dfrac{1}{25}\)

Dấu \("="\Leftrightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3x+4y}{9+16}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{25}\\y=\dfrac{4}{25}\end{matrix}\right.\)

Bình luận (0)
AV
Xem chi tiết
LF
26 tháng 12 2016 lúc 17:42

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)

\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
VD
Xem chi tiết
PB
Xem chi tiết
DM
Xem chi tiết
KA
5 tháng 8 2017 lúc 21:12

Theo AM-GM , có :

\(x+y\ge2\sqrt{xy}\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)

Nhân vế theo vế :

\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Bình luận (0)
DM
5 tháng 8 2017 lúc 21:21

Kurosaki Akatsu​   mình đang cần chứng minh phần sau nhé:))

Bình luận (0)
HH
5 tháng 8 2017 lúc 21:34

Bạn ơi đề có nhầm không chứ khi dấu = xảy ra tức là a=b=1/2 thì Bt có Gt là 4 rồi

Bình luận (0)
VT
Xem chi tiết
NT
29 tháng 4 2019 lúc 15:20

Hỏi đáp Toán

Bình luận (2)
KN
Xem chi tiết
TA
4 tháng 2 2017 lúc 13:49

BĐT Cosi cho 2 số a,b >0: 
a + b >= 2căn(ab) 

di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 

<=> a + b - 2√(ab) ≥ 0 

<=> a + b ≥ 2√(ab) 
dau "=" xay ra khi √a - √b = 0 <=> a = b 
 

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

Bình luận (0)
TA
4 tháng 2 2017 lúc 13:53

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

Bình luận (0)
ND
7 tháng 6 2020 lúc 20:26

Bài làm:

*CM bất đẳng thức Cauchy

Ta có: \(\left(x-y\right)^2\ge0\)(luôn đúng với mọi x,y)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\frac{\left(x+y\right)^2}{4}\ge xy\)

\(\Leftrightarrow\sqrt{\frac{\left(x+y\right)^2}{4}}\ge\sqrt{xy}\)

\(\Leftrightarrow\frac{x+y}{2}\ge\sqrt{xy}\)

Mình chứng minh theo cách đặt biến x,y nhé!

*Chứng minh không có giá trị nào của x,y,z thỏa mãn đẳng thức: (Đề bạn chép nhầm biến x thành a nhé)

Ta có:

\(x^2+4y^2+z^2-2x+8y-6z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4=0\)\(\left(1\right)\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)với mọi x,y,z

\(\Rightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\)với mọi x,y,z

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\ge4>0\)với mọi x,y,z \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\)Mâu thuẫn\(\Rightarrow\)Không tồn tại bất kỳ giá trị nào của x,y,z thỏa mãn đẳng thức trên

=> điều phải chứng minh

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
PP
Xem chi tiết