Những câu hỏi liên quan
HT
Xem chi tiết
TC
8 tháng 8 2021 lúc 21:17

undefined

Bình luận (1)
HP
Xem chi tiết
NT
Xem chi tiết
AN
9 tháng 8 2021 lúc 20:08

\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)

\(\Leftrightarrow2x\sqrt{1-y^2}+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)

\(\Leftrightarrow6-2x\sqrt{1-y^2}-2y\sqrt{2-z^2}-2z\sqrt{3-x^2}=0\)

\(\Leftrightarrow\left(x^2-2x\sqrt{1-y^2}+\left(1-y^2\right)\right)+\left(y^2-2y\sqrt{2-z^2}+\left(2-z^2\right)\right)+\left(z^2-2z\sqrt{3-x^2}+\left(3-x^2\right)\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)

\(\Leftrightarrow x=\sqrt{1-y^2};y=\sqrt{2-z^2};z=\sqrt{3-x^2}\)

\(\Leftrightarrow x=1,y=0,z=\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TE
Xem chi tiết
NA
Xem chi tiết
QN
Xem chi tiết
TH
Xem chi tiết
NH
14 tháng 2 2017 lúc 17:28

Ta có:

 \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

Bình luận (0)
QL
Xem chi tiết
QL
4 tháng 11 2023 lúc 20:02

Bình luận (0)
QL
4 tháng 11 2023 lúc 20:03

câu hỏi đây nhé

Bình luận (0)
ND
Xem chi tiết
RH
1 tháng 9 2021 lúc 8:44

Chắc dùng Mincowski

Bình luận (0)