cho 3 số dương x,y,z thoả căn x +căn y+căn z=1
GTNN 3(x+y+z)
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
tìm số thực dương x,y,z
x*căn(1-y^2 ) +y*căn(2-z^2)+z*căn(3-x^2)=3
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
\(\Leftrightarrow2x\sqrt{1-y^2}+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
\(\Leftrightarrow6-2x\sqrt{1-y^2}-2y\sqrt{2-z^2}-2z\sqrt{3-x^2}=0\)
\(\Leftrightarrow\left(x^2-2x\sqrt{1-y^2}+\left(1-y^2\right)\right)+\left(y^2-2y\sqrt{2-z^2}+\left(2-z^2\right)\right)+\left(z^2-2z\sqrt{3-x^2}+\left(3-x^2\right)\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
\(\Leftrightarrow x=\sqrt{1-y^2};y=\sqrt{2-z^2};z=\sqrt{3-x^2}\)
\(\Leftrightarrow x=1,y=0,z=\sqrt{2}\)
cho x,y,z là các số dương thỏa x+y+z>=12.tìm minP= x/căn y+y/căn z+z/căn z
cho x y z là các số thực dương thỏa mãn x + y + z = 3.Tìm GTLN của A= xy/căn(z2+3) + yz/căn(x2+3) + zx/căn(y2+3)
Cho x,y,z là các số thực dương lớn hơn 3. Tìm gtnn của biểu thức P= 2x/ căn ( y+z-6) + y/ căn ( z+ 2x -6) + z/ căn ( 2x+y-6)
Cho 3 so x,y,z là dương thỏa mãn x+y+z<=1.Chứng minh rằng:
Căn của x^2+1/y^2+ căn của y^2+1/z^2+ căn của z^2+1/x^2 >=82
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
cmr với số thức dương x y z thì x/y+y/z+z/x >=(x+y+z)/căn 3 của xyz
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)