Những câu hỏi liên quan
DL
Xem chi tiết
FF
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Bình luận (0)
MT
Xem chi tiết
KK
8 tháng 1 2022 lúc 20:53

Từ a+b+c=0 => b+c=-a 

Theo đề ra ta có a+ b3 + c= 0 

=> a3 + (b+c)(b2 - bc + c2 )=0 

<=> a3- a[(b + c )2 -3bc]= 0 

<=> a3- [( -a )2 - 3bc] = 0 

<=> a3 -  a3 +3bc = 0 

<=> 3bc= 0 

<=> a =0 hoặc b=0 hoặc c=0 ( đpcm) 

cho mik điểm nha bạn ơiii

 

Bình luận (0)
LH
Xem chi tiết
NP
30 tháng 11 2016 lúc 19:35

Bài này mà không làm đc đốt sách đê 

Bình luận (0)
HH
30 tháng 11 2016 lúc 21:27

ê cu vô cái link này nè http://olm.vn/hoi-dap/question/94896.html tui vừa chép xong 

ooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 6 2021 lúc 21:07

`P=a+b+c+1/a+1/b+1/c`

`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`

Áp dụng BĐT cosi:

`a+1/(9a)>=2/3`

`b+1/(9b)>=2/3

`c+1/(9c)>=2/3`

Áp dụng BĐT cosi schwart

`1/a+1/b+1/c>=9/(a+b+c)>=9`

`<=>8/9(1/a+1/b+1/c)>=8`

`=>P>=2/3+2/3+2/3+8=10`

Dấu "=" xảy ra khi `a=b=c=1/3`

Bình luận (0)
H24
2 tháng 6 2021 lúc 21:09

Nãy ghi nhầm :v

`P=a+b+c+1/a+1/b+1/c`

`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`

Áp dụng BĐT cosi:

`a+1/(9a)>=2/3`

`b+1/(9b)>=2/3`

`c+1/(9c)>=2/3`

Áp dụng BĐT cosi schwart

`1/a+1/b+1/c>=9/(a+b+c)>=9`

`<=>8/9(1/a+1/b+1/c)>=8`

`=>P>=2/3+2/3+2/3+8=10`

Dấu "=" xảy ra khi `a=b=c=1/3`

Bình luận (0)
NA
Xem chi tiết
TV
Xem chi tiết
HF
17 tháng 8 2020 lúc 13:41

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
AN
2 tháng 8 2017 lúc 11:29

Dề sai thế \(a=\frac{1}{3};b=5;c=\frac{3}{5}\)vô đi nhé.

Bình luận (0)
PT
Xem chi tiết
TD
21 tháng 4 2019 lúc 15:41

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Bình luận (0)
TD
21 tháng 4 2019 lúc 15:43

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Bình luận (0)
TD
21 tháng 4 2019 lúc 15:52

Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)

\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)

\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)

Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0

Mà abc > 0 nên A \(\ge\)0 => ....

Bình luận (0)
GD
Xem chi tiết
NH
25 tháng 10 2019 lúc 17:25

Ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

+) TH1: Nếu a + b + c = 0 \(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Lại có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=-1\)

+) TH2: a + b + c ≠ 0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Do đó: \(\hept{\begin{cases}\frac{a+b}{c}=2\\\frac{b+c}{a}=2\\\frac{c+a}{b}=2\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Ta có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=2.2.2=8\)

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa